[1]

E. Wigner,*Characteristic vectors of bordered matrices with infinite dimensions*, Ann. of Math.**62** (1955), 548–564.

[2]

E. Wigner*On the distribution of the roots of certain symmetric matrices*, Ann. of Math.**67** (1958), 325–327.

[3]

L. Arnold**On the asymptotic distribution of the eigenvalues of random matrices**, J. Math. Analysis and Appl.**20** (1967), 262–268.

[4]

L. Arnold*On Wigner's Semicircle Law for the eigenvalues of random matrices*, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete**19** (1971), 191–198.

[5]

K. W. Wachter*The strong limits of random matrix spectra for sample matrices of independent elements*, Ann. of Probability. (1978),**6, No. 1** 1–18.

[6]

V. L. Girko*Spectral Theory of Random Matrices*, 1988 Nauka, Moscow. (In Russian).

[7]

V. A. Marchenko, Pastur, L. A.*Distribution of eigenvalues in certain sets of random matrices*, Math. Sbornik**72, No. 4** (1967), 507–536.

[8]

L. A. Pastur*On the spectrum of random matrices*, Theor. Mat. Fiz.**10** (1972), 102–112.

[9]

L. A. Pastur*The spectra of random self-adjoint operators*, Russ. Math. Surv.**28** (1973), 3–64.

[10]

A. M. Khorunzhy, B. A. Khoruzhenko, L. A. Pastur and M. V. Shcherbina*The large-n limit in statistical mechanics and the spectral theory of disordered systems*, Phase Transitions and Critical Phenomena (C. Domb and J. L. Lebowitz Eds.) Vol. 15, Academic Press, London, 1992, pp. 73–239.

[11]

A. M. Khorunzhy, B. A. Khoruzhenko, L. A. Pastur*On the 1/N corrections to the green functions of random matrices with independent entries*, J. Phys. A: Math. Gen.**28** (1995), L31-L35.

[12]

A. M. Khorunzhy, B. A. Khoruzhenko, L. A. Pastur*Asymptotic properties of large random matrices with independent entries*, J. Math. Phys.**37 No. 10** (1996), 5033–5059.

[13]

S. A. Molchanov, L. A. Pastur, A. M. Khorunzhy*Limiting eigenvalue distribution for band random matrices*, Teor. Mat. Fiz.**90** (1992), 108–118.

[14]

Z. Füredi, J. Komlóz*The eigenvalues of random symmetric matrices*, Combinatorica**1, No. 3** (1981), 233–241.

[15]

Z. D. Bai, Y. Q. Yin*Necessary and sufficient conditions for almost sure convergence of the largest eigenvalue of a Wigner matrix Ann. of Probability*,**16**,**No. 4** (1988), 1729–1741.

[16]

C. Tracy, H. Widom*On orthogonal and symplectic matrix ensembles*, Commun. Math. Phys.**177** (1996) 727–754.

[17]

W. Feller*An Introduction to Probability Theory and its Applications*, 1966 Wiley, New York.