1.

P. Wynn, “Acceleration techniques for iterative vector and matrix problems,”*Math. Comp.*
**16**, 301–322 (1962).

2.

D. A. Smith, W. F. Ford and A. Sidi, “Extrapolation methods for vector sequences,”*SIAM Rev.*
**29**, 199–233 (1987).

3.

D. E. Roberts and P. R. Graves-Morris, “The application of generalised inverse rational intepolants in the modal analysis of vibrating structures I,” in*Algorithms for Approximation*, J. C. Mason and M. G. Cox, eds. (Oxford University Press, Oxford, 1987).

4.

P. R. Graves-Morris, “Solution of integral equations using generalised inverse, function-valued Padé approximants I,”*J. Comput. Appl. Math.*
**32**, 117–134 (1990).

5.

P. R. Graves-Morris and R. Thukral, “Solution of integral equations using function-valued Padé approximants II,”*Numerical Algorithms*
**3**, 223–234 (1992).

6.

J. B. McLeod, “A note on the ɛ-algorithm,”*Computing*
**7**, 17–24 (1971).

7.

P. Wynn, “Vector continued factions,”*Linear Algebra Appl.*
**1**, 357–395 (1968).

8.

P. R. Graves-Morris, “Vector-valued rational interpolants I,”*Numer. Math.*
**42**, 331–348 (1983).

9.

P. R. Graves-Morris and C. D. Jenkins, “Generalised inverse vector-valued rational interpolation,”*Padé Approximation and Its Applications, Bad Honnef, 1983*, H. Werner and H. J. Bünger, eds. (Springer, Berlin, 1984), pp. 144–156.

10.

P. R. Graves-Morris and C. D. Jenkins, “Vector-valued rational interpolants III,”*Constr. Approx.*
**2**, 263–289 (1986).

11.

D. E. Roberts, “Clifford algebras and vector-valued rational forms I,”*Proc. R. Soc. London A.*
**431**, 285–300 (1990).

12.

D. E. Roberts, “Clifford algebras and vector-valued rational forms II,”*Numerical Algorithms*
**3**, 371–382 (1992).

13.

P. Lounesto, “Clifford algebras and Hestenes spinors,”*Found. Phys.*
**23**, 1203–1237 (1993).

14.

G. A. Baker, Jr., and P. R. Graves-Morris,*Padé Approximants* (Encyclopaedia of Mathematics and Its Applications**13** and**14**) (Addison-Wesley, Reading, Massachusetts, 1981).

15.

P. R. Graves-Morris and D. E. Roberts, “From matrix to vector Padé approximants,”*J. Comput. Appl. Math.*, in press.

16.

L. V. Ahlfors and P. Lounesto, “Some remarks on Clifford algebras,”*Complex Variables*
**12**, 201–209 (1989).

17.

R. D. Schafer,*An Introduction to Non-Associative Algebras* (Academic, New York, 1966).