, Volume 8, Issue 2, pp 172-187

The advantage of long-distance clonal spreading in highly disturbed habitats

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Summary

Classical theory states that cover of annual plants should increase relative to perennials as disturbance frequency increases. However, it has been suggested that long-distance clonal spreading can allow some perennial plants to survive in highly disturbed areas by quickly spreading into disturbed patches. To evaluate these hypotheses, we analysed data of plant distributions in two different ecosystems, a barrier island and a short-grass steppe. The disturbances studied were sand deposition during storms (overwash) on the barrier island and grazing by cattle in the short-grass steppe. In each case the disturbance frequency varied over the ecosystem; we categorized different areas in terms of their disturbance frequencies. All plant species in each area were categorized as one of four plant life forms (1) annual or biennial, (2) herbaceous perennial without long-distance clonal spreading (3) herbaceous perennial with long-distance clonal spreading (i.e guerilla form) and (4) woody plant. Percentage cover of each plant life form in each disturbance frequency category was calculated. In both ecosystems, (1) there was an increase in the relative cover of annuals as one moved from areas of low to moderate disturbance frequencies, but then a decrease in cover of annuals as one moved into the areas of highest disturbance frequency and (2) the guerilla forms showed the greatest relative increase in cover from moderately to highly disturbed areas. The combination of two factors can explain this pattern: (1) long-distance clonal spreading effectively reduces the time to colonization of recently disturbed sites and (2) effects of the disturbances in these two systems are probably more severe for seeds than for stems. We illustrate these effects using a spatially explicit simulation model of the population dynamics of plants in a disturbed landscape.