[1]

Stokes, G. G.: On the effect of the rotation of cylinders and spheres about their own axes in increasing the logarithmic decrement of the are of vibration. (Mathematical and Philosophical Papers**5**.) Cambridge: Cambridge University Press 1886.

[2]

Casarella, M. J., Laura, P. A.: Drag on an oscillating rod with longitudinal and torsional motion. J. Hydronautics,**3**, 180–183 (1969).

[3]

Tanner, R. I.: Plane creeping flows of incompressible second order fluids. Physics of Fluids**9**, 1246–1248 (1966).

[4]

Huilgol, R. R.: On uniqueness and nonuniqueness in the plane creeping flows of second-order fluids. SIAM J. Appl. Math.**24**, 226–233 (1976).

[5]

Fosdick, R. L., Rajagopal, K. R.: Uniqueness and drag for fluids of second grade in steady motion. Int. J. Non-Linear Mech.**13**, 131–137 (1978).

[6]

Fosdick, R. L., Truesdell, C.: Universal flows in the simplest theories of fluids. Annali Della Normale Superiore di Pisa, serie IV,**4**, 323–341 (1977).

[7]

Rajagopal, K. R., Gupta, A. S.: On a class of exact solutions to the equations of motion of a second grade fluid. Intl. J. Eng. Science**19**, 1009–1014 (1981).

[8]

Rajagopal, K. R., Gupta, A. S.: Flow and stability of a second grade fluid between two parallel plates rotating about noncoincident axes. Intl. J. Eng. Science**19**, 1401–1409 (1981).

[9]

Rajagopal, K. R., Gupta, A. S.: Flow and stability between two parallel rotating plates. Archiwum Mechaniki Stosowanej (in press).

[10]

Rajagopal, K. R.: The flow of a second order fluid between rotating parallel plates. J. of Non-Newtonian Fluid Mech.**9**, 185–190 (1981).

[11]

Dunn, J. E.: On the impossibility of Jeffery-Hamel flows of simple fluids. Proceedings of the SECTAM meeting, Huntsville, Alabama, 1981.

[12]

Rajagopal, K. R., Gupta, A. S.: An exact solution for the flow of a non-Newtonian fluid past a porous plate. Meccanica (submitted for publication).

[13]

Beard, D. W., Walters, K.: Elastico-viscous boundary layer flows. Proc. Comb. Phil. Soc.**60**, 667–674 (1967).

[14]

Coleman, B. D., Noll, W.: An approximation theorem for functionals, with applications in continuum mechanics. Arch. Ratl. Mech. Anal.**56**, 191–252 (1960).

[15]

Rivlin, R. S., Ericksen, J. L.: Stress deformation relation for isotropic materials. J. Ratl. Mech. Anal.**4**, 323–425 (1955).