[1]

Anzellotti G.,*Pairings between measures and functions and compensated compactness*, Ann. Mat. Pura Appl.,**135** (1983), 293–318.

[2]

Baiocchi C. and A. Capelo, Variational and Quasi-Variational Inequalities, Applications to Free-Boundary Problems, Vols.**1,2** (1984), John Wiley: Chichester-New York.

[3]

Bardos C., Le Roux A.Y. and J.C. Nedelec,*First order quasilinear equations with boundary conditions*, Comm. Partial Diff. Eqs.,**4** (1979), 1017–1034.

[4]

Bouchitté G. and G. Buttazzo,*Characterization of optimal shapes and masses through Monge-Kantorovich equation*, Preprint, University of Pisa, February 2000.

[5]

Brezzi F. and M. Fortin,*Mixed and Hydrid Finite Element Methods*, Springer-Verlag: New York, 1991.

[6]

Bürger R., Karlsen K.H. and H. Frid,*On a free boundary problem for a strongly degenerate quasilinear parabolic equation arising in a model for pressure filtration*, submitted for publication in December 2001.

[7]

Chen G.-Q. and H. Frid,*Divergence-measure fields and conservation laws*, Arch. Rational Mech. Anal.,**147** (1999), 89–118.

[8]

Chen G.-Q. and H. Frid,*Vanishing viscosity limit for initial-boundary value problems for conservation laws*, Contemporary Mathematics,**238** (1999), 35–51.

[9]

Chen G.-Q. and H. Frid,*Extended divergence-measure fields and the Euler equations for gas dynamics*, submitted for publication in September 2001.

[10]

Chen G.-Q., Frid H. and Y. Li,*Uniqueness and stability of Riemann solutions with large oscillation in gas dynamics*, Commun. Math. Phys. 2001 (to appear).

[11]

Chen G.-Q., Levermore C.D. and T.-P. Liu,*Hyperbolic conservation laws with stiff relaxation terms and entropy*, Comm. Pure Appl. Math.,**47** (1994), 787–830.

[12]

Chen G.-Q. and M. Rascle,*Initial layers and uniqueness of weak entropy solutions to hyperbolic conservation laws*, Arch. Rational Mech. Anal.,**153** (2000), 205–220.

[13]

Dafermos C.M., Hyperbolic Conservation Laws in Continuum Physics, Springer-Verlag: Berlin, 1999.

[14]

DiPerna R.,*Convergence of the viscosity method for isentropic gas dynamics*, Comm. Math. Phys.,**91** (1983), 1–30.

[15]

DiPerna R.,*Measure-valued solutions to conservation laws*, Arch. Rational Mech. Anal.,**88** (1985), 223–270.

[16]

DiPerna R.,*Uniqueness of solutions to hyperbolic conservation laws*, Indiana Univ. Math. J.,**28** (1979), 137–188.

[17]

Evans L.C. and R.F. Gariepy, Lecture Notes on Measure Theory and Fine Properties of Functions, CRC Press: Boca Raton, Florida, 1992.

[18]

Federer H., Geometric Measure Theory, Springer-Verlag: Berlin-Heidelberg-New York, 1969.

[19]

Friedrichs K.O. and P.D. Lax,*Systems of conservation equations with a convex extension*, Proc. Nat. Acad. Sci. U.S.A.,**68** (1971), 1686–1688.

[20]

Gagliardo E.,*Caratterizioni delle tracce sulla frontiera relativa ad alcune classi di funzioni in n variabli*, Rend. Sem. Mat. Univ. Padova,**27** (1957), 284–305.

[21]

Glimm J.,*Solutions in the large for nonlinear hyperbolic systems of equations*, Comm. Pure Appl. Math.,**18** (1965), 95–105.

[22]

Glimm J. and P.D. Lax,*Decay of Solutions of Systems of Nonlinear Hyperbolic Conservation Laws*, Mem. Amer. Math. Soc.,**101** (1970), AMS: Providence, R.I.

[23]

Harrison J. and A. Norton,*The Gauss-Green theorem for fractal boundaries*. Duke Math. J.,**67** (1992), 575–588.

[24]

Harrison J.,*Stokes' theorem for nonsmooth chains*, Bull. Amer. Math. Soc. (N.S.),**29** (1993), 235–242.

[25]

Jurkat W.B. and D.J.F. Nonnenmacher,*A generalized n-dimensional Riemann integral and the divergence theorem with singularities*, Acta Sci. Math. (Szeged),**59** (1994), 241–256.

[26]

Katsoulakis M. and A. Tzavaras,*Contractive relaxation systems and the scalar multidimensional conservation law*, Comm. Partial Diff. Eqs.,**22** (1997), 195–233.

[27]

Kruzkov S.N.,*First order quasilinear equations with several independent variables*, Mat. Sb. (N.S.) (Russian),**81**(123) (1970), 228–255.

[28]

Lax P.D.,*Hyperbolic systems of conservation laws*, Comm. Pure Appl. Math.,**10** (1957), 537–566.

[29]

Lax P.D.,*Hyperbolic systems of Conservation Laws and the Mathematical Theory of Shock Waves*, CBMS.,**11** (1973), SIAM, Philadelphia.

[30]

Lax P.D.,*Shock waves and entropy*, In: Contributions to Functional Analysis, ed. E.A. Zarantonello, Academic Press, New York, 1971, pp. 603–634.

[31]

Lions P.L., Perthame B. and E. Tadmor,*A kinetic formulation of multidimensional scalar conservation laws and related equations*, J. Amer. Math. Soc.,**7** (1994), 169–191.

[32]

Liu T.-P. and J. Smoller,*On the vacuum state for the isentropic gas dynamics equations*, Adv. Appl. Math.,**1** (1980), 345–359.

[33]

Natalini R.,*Convergence to equilibrium for the relaxation approximations of conservation laws*, Comm. Pure Appl. Math.,**49** (1996), 795–823.

[34]

Málec J., Nečas J., Rokyta M. and M. Ružička, Weak and Measure-valued Solutions to Evolutionary PDEs. Chapman and Hall: London, 1996.

[35]

Mascia C., Porretta A. and A. Terracina,*Nonhomogeneous Dirichlet problems for degenerate parabolic-hyperbolic equations*, Arch. Rational Mech. Anal., (to appear).

[36]

Nonnenmacher D.J.F.,*Sets of finite perimeter and the Gauss-Green theorem with singularities*, J. London Math. Soc.,**52**(2) (1995), 335–344.

[37]

Otto F.,*First order equations with boundary conditions*, Preprint no. 234, SFB 256, Univ. Bonn., 1992.

[38]

Pfeffer W.F.,*Derivation and Integration*, Cambridge Tracts in Math.,**140** (2001), Cambridge Univ. Press: Cambridge.

[39]

Rodrigues J.-F.,*Obstacle Problems in Mathematical Physics*, North-Holland Mathematics Studies,**134** (1987), Elsevier Science Publishers B.V.

[40]

Schwartz L., Théorie des Distributions, Actualites Scientifiques et Industrielles,**1091, 1122**, Herman: Paris, 1950–51.

[41]

Szepessy A.,*An existence result for scalar conservation laws using measure valued solutions*, Commun. Partial Diff. Eqs.,**14** (1989), 1329–1350.

[42]

Serre D., Systems of Conservation Laws I, II, Cambridge University Press: Cambridge, 2000.

[43]

Shapiro V.,*The divergence theorem for discontinuous vector fields*. Ann. Math.,**68**(2) (1958), 604–624.

[44]

Stein E., Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press: Princeton, NJ, 1970.

[45]

Vasseur A.,*Strong traces for solutions to multidimensional scalar conservation laws*, Arch. Rational Mech. Anal.**160** (2001), 181–193.

[46]

Volpert A.I.,*The space BV and quasilinear equations*, Mat. Sb. (N.S.),**73** (1967), 255–302, Math. USSR Sbornik,**2** (1967), 225–267 (in English).

[47]

Wagner, D.,*Equivalence of the Euler and Lagrange equations of gas dynamics for weak solutions*, J. Diff. Eqs.,**68** (1987), 118–136.

[48]

Whitney H., Geometric Integration Theory, Princeton Univ. Press: Princeton, NJ, 1957.

[49]

Whitney H.,*Analytic extensions of differentiable functions defined in closed sets*, Trans. Amer. Math. Soc.,**36** (1934), 63–89.

[50]

Ziemer W.P.,*Cauchy flux and sets of finite perimeter*, Arch. Rational Mech. Anal.,**84** (1983), 189–201.

[5]

Ziemer W.P., Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation, Springer-Verlag: New York, 1989.