Skip to main content
Log in

The critical inclination in artificial satellite theory

  • Published:
Celestial mechanics Aims and scope Submit manuscript

A delicacy so very susceptible of offence...—Hester Lynch PIOZZI,Observations and Reflections made in the Course of a Journey through France, Italy and Germany (1789)

Abstract

Certain it is that the critical inclination in the main problem of artificial satellite theory is an intrinsic singularity. Its significance stems from two geometric events in the reduced phase space on the manifolds of constant polar angular momentum and constant Delaunay action. In the neighborhood of the critical inclination, along the family of circular orbits, there appear two Hopf bifurcations, to each of which there converge two families of orbits with stationary perigees. On the stretch between the bifurcations, the circular orbits in the planes at critical inclinmation are unstable. A global analysis of the double forking is made possible by the realization that the reduced phase space consists of bundles of two-dimensional spheres. Extensive numerical integrations illustrate the transitions in the phase flow on the spheres as the system passes through the bifurcations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham, R., and Marsden, B.: 1978,Foundations of Mechanics, The Benjamin/Cummings Publishing Company, Inc, Reading, MA.

    Google Scholar 

  • Aksnes, K.: 1965,Astroph. Norv. 10, 69–77.

    Google Scholar 

  • Aksnes, K.: 1966,Astroph. Norv. 10, 149–169.

    Google Scholar 

  • Aksnes, K.: 1970,Astron. J. 75, 1066–1076.

    Google Scholar 

  • Allan, R. R.: 1970,Celest. Mech. 2, 121–122

    Google Scholar 

  • Aoki, S.: 1962,Astron. J. 67, 571–572.

    Google Scholar 

  • Aoki, S.: 1963a,Astron. J. 68, 271–272.

    Google Scholar 

  • Aoki, S.: 1963b,Astron. J. 68, 355–365.

    Google Scholar 

  • Aoki, S.: 1963c,Astron. J. 68, 365–381.

    Google Scholar 

  • Brouwer, D.: 1946,Astron. J. 51, 223–231.

    Google Scholar 

  • Brouwer, D.: 1958,Astron. J. 63, 133–138.

    Google Scholar 

  • Brouwer, D.: 1959,Astron. J. 64, 378–397.

    Google Scholar 

  • Chapront, J.: 1965, C. R. Acad. Sc. Paris260A, 2131–2134.

    Google Scholar 

  • Cid, R., Ferrer, S. and Sein-Echaluce, M.L.: 1986,Celest. Mech. 38, 191–205.

    Google Scholar 

  • Cid, R., and Lahulla, J. F.: 1969,Publ. Rev. Ac. Cienc. Zaragoza 24, 159–165.

    Google Scholar 

  • Cid, R., and Lahulla, J. F., 1971,Publ. Rev. Ac. Cienc. Zaragoza 26, 333–343.

    Google Scholar 

  • Cushman, R.: 1983,Celest. Mech. 31, 401–429.

    Google Scholar 

  • Cushman, R.: 1984, inDifferential Geometric Methods in Mathematical Physics, ed. S. Sternberg, D. Reidel Publishing Company, Dordrecht, 125–144.

    Google Scholar 

  • Cushman, R.: 1986, Notes for a manuscript to appear as a report of the Mathematisch Instittuut, Rijksuniversiteit Utrecht, The Netherlands.

  • Dahl, O. J., and Nygaard, K.: 1966,Comm. ACM 9, 671–678.

    Google Scholar 

  • Delos, J.B., Knudson, S.K., and D.W. Noid: 1983a,Phys. Rev. Lett. 50, 579–583.

    Google Scholar 

  • Delos, J.B., Knudson, S.K., and D.W. Noid: 1983b,Phys. Rev. A 28, 7–20.

    Google Scholar 

  • Deprit, A.: 1969,Celest. Mech. 1, 12–30.

    Google Scholar 

  • Deprit, A.: 1981,Celest. Mech. 24, 111–153.

    Google Scholar 

  • Deprit, A.: 1982,Celest. Mech. 26, 9–21.

    Google Scholar 

  • Deprit, A.: 1983,Celest. Mech. 29, 229–247.

    Google Scholar 

  • Deprit, A.: 1984,The Big Bang and Georges Lemaître, ed. A. Berger, D. Reidel Publishing Company, Dordrecht, 151–180.

    Google Scholar 

  • Deprit, A., and Henrard, J.: 1968, A Manifold of Periodic Orbits,Advances in Astronomy and Astrophysics 6, 1–124.

    Google Scholar 

  • Deprit, A., and Richardson, D.: 1982,Celest. Mech. 28, 253–273.

    Google Scholar 

  • Fock, V.: 1936,Z. Physik 98, 10–154.

    Google Scholar 

  • Garfinkel, B.: 1959,Astron. J. 64, 353–367.

    Google Scholar 

  • Garfinkel, B.: 1969,Celest. Mech. 1, 11.

    Google Scholar 

  • Garfinkel, B.: 1960,Astron. J. 65, 624–627.

    Google Scholar 

  • Garfinkel, B.: 1972,Celest. Mech. 5, 189–203.

    Google Scholar 

  • Garfinkel, B.: 1973a,Celest. Mech. 7, 205–224.

    Google Scholar 

  • Garfinkel, F. T.: 1965,Astronautica Acta 11, 196–201.

    Google Scholar 

  • Herget, P. and Musen, P.: 1959,Astron. J. 63, 430–433.

    Google Scholar 

  • Hori, G.: 1960a,Astron. J. 65, 53.

    Google Scholar 

  • Hori, G.: 1960b,Astron. J. 65, 291–300.

    Google Scholar 

  • Hough, M.E.: 1981,Celest. Mech. 25, 137–157.

    Google Scholar 

  • Hughes, S.: 1981,Celest. Mech. 25, 235–266.

    Google Scholar 

  • Izsak, I.: 1963,The Use of Artificial Satellites for Geodesy, ed. G. Veis, North-Holland Publishing Company, Amsterdam, 17–40.

    Google Scholar 

  • Jupp, A.: 1975,Celest. Mech. 11, 361–378.

    Google Scholar 

  • Jupp, A. 1980,Celest. Mech 21, 361–393.

    Google Scholar 

  • Kikuchi, S.: 1967,Astronom. Nachr. 289, 241–245.

    Google Scholar 

  • Kozai, Y.: 1963,Publ. Astron. Soc. Japan,15, 301–312.

    Google Scholar 

  • Krause, H. G. L.: 1952, “Die Säkularstörungen einer Aussenstationsbahn,” inProbleme aus der Astronnautischen Grundlagenforschung, ed. H. H. Kölle,Vortrage III Internationalen Astronautischen Kongress, Stuttgart 1–6 September 1952, 161–173.

  • Lyddane, R.H. and Cohen, C.: 1978,Celest. Mech 18, 233–236.

    Google Scholar 

  • Lubowe, A. G.: 1969a,Celest. Mech. 1, 6–10.

    Google Scholar 

  • Lubowe, A. G.: 1969b,Celest. Mech. 1, 143.

    Google Scholar 

  • NcCarthy, J., Abrahams, P.W., Edwrards, D. J., Hart, T. P., and Levin, M. I.: 1962,LISP 1.5 Programmer's Manual, The MIT Press, Cambridge, MA

    Google Scholar 

  • Marsden, J. and Weinstein, A.: 1974,Rep. Math. Phys.,5, 121–130.

    Google Scholar 

  • Mathlab Group The: 1983,MACSYMA, Version Ten, Laboratory for Computer Science, M.I.T., Cambridge, MA.

    Google Scholar 

  • Message, P.J., Hori, G., and Garfinkel, B.: 1962,The Observatory,82, 168–170.

    Google Scholar 

  • Meyer, K.R.,: 1973, inDynamical Systems, ed. M. M.Peixoto, Academic Press, New York, 259–272.

    Google Scholar 

  • Miller, B. R., and Deprit, A.: 1986, to appear in the proceedings of the 1986 Conference on Conference on Computers and Mathematics, Stanford University, Palo Alto, CA, July-August 1986.

  • Moses, J.: 1974, “MACSYMA-The Fifth Year,” Proceedings of the EUROSAM conference,ACM SIGSAM Bulletin, Auguat 1974.

  • Orlov, A. A.: 1953,Soob3eni8 Gosudarstvennogo Astronomiheskogo Instituta imeni P. K. Wternberga,33, 3–38.

    Google Scholar 

  • Orlov, A. A.: 1954,Trydy Gosudarstvennogo Astronomiheskogo Instituta imeni P. K. Wternberga,34, 139–153.

    Google Scholar 

  • Petty, C. M., and Breakwell, J. V.: 1960,Journal of the Franklin Institute 270, 259–282.

    Google Scholar 

  • Petty, C. M., and Breakwell, J. V.: 1960,Journal of the Franklin Institute 270, 259–282.

    Google Scholar 

  • Rand, R. H.: 1984,Computer Algebra in Applied Mathematics. An Introduction to MACSYMA, Pitnam Advanced Publishing Program, Boston, MA.

    Google Scholar 

  • Roberson, R. E.: 1957,Journal of the Franklin Institute 264, 161–202 and 269–285.

    Google Scholar 

  • Rom, A.: 1970,Celest. Mech. 1, 301–319.

    Google Scholar 

  • Rom, A.: 1971,Celest. Mech. 3, 331–345.

    Google Scholar 

  • Sloane, N. J. A.: 1986,Not. Amer. Math. Soc. 33, 40–43.

    Google Scholar 

  • Smith, J. C.: 1986,Paper AIAA-86-2069-CP, AIAA/AAS Astrodynamics Conference, Williamsburg, VA, August 18–20, 1986.

  • Stefik, M., and Bobrow, D. G.: 1984,The AI magazine (no vol. nr), 40–62.

  • Sterne, T. E.: 1957,Astron. J. 63, 28–40.

    Google Scholar 

  • Sterne, T. E.: 1960,An Introduction to Celestial Mechanics, Interscience Publishers, Inc., New York.

    Google Scholar 

  • Strubble, R. A.: 1960,Arch. Rational Mech. Anal. 7, 87–104.

    Google Scholar 

  • Tisserand, F.: 1868,J. Math. pures et appliquées 13, 255–303.

    Google Scholar 

  • Winston P., H., and Horn, B. K. P.: 1984,LISP, 2nd ed. Addison-Wesley Publishing Company, Reading, MA.

    Google Scholar 

  • Zeis, E.: 1978,A Computerized Algebraic Utility for the Construction of Non Singular Satellite Theory. M. S. Thesis, Massachusetts Institute of Technology, Cambridge, MA.

    Google Scholar 

  • Zeis, E., and Cefola, P.: 1978,J. Guidance and Control 3, 48–54.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

NAS/NRC Postgraduate Research Associate in 1984–1985.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coffey, S.L., Deprit, A. & Miller, B.R. The critical inclination in artificial satellite theory. Celestial Mechanics 39, 365–406 (1986). https://doi.org/10.1007/BF01230483

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01230483

Keywords

Navigation