[1]

E. Bach. How to generate factored random numbers.*SIAM J. Comput.*,**2**:179–193, 1988.

[2]

E. Bach, G. Miller and J. Shallit. Sums of Divisors, perfect numbers, and factoring.*SIAM J. Comput.*,**4**:1143–1154, 1986.

[3]

E. Bach and J. Shallit. Factoring with cyclotomic polynomials.*Math. Comp.*,**52**(185):201–219, 1989.

[4]

P. W. Beame, S. A. Cook and H. J. Hoover. Log depth circuits for division and related problems.*SIAM J. Comput.*,**15**:994–1003, 1986.

[5]

R. P. Brent. Multiple precision zero-finding methods and the complexity of elementary function evaluation. In J. F. Traub, editor,*Analytical Computational Complexity*, pp. 151–176. Academic Press, New York, 1976.

[6]

A. Cobham. The recognition problem for the set of perfect squares. In*Proceedings of the 7th Annual Symposium on Switching and Automata Theory*, pp. 78–87, 1966.

[7]

G. E. Collins. Computing multiplicative inverses in*GF(p)*.*Math. Comp.*,**23**:197–200, 1969.

[8]

H. Davenport.*Multiplicative Number Theory*. Springer-Verlag, New York, 1980.

[9]

J. Dixon. Asymptotically fast factorization of integers.*Math. Comp.*,**36**(153):255–260, 1981.

[10]

S. Goldwasser and J. Kilian. Almost all primes can be quickly certified. In*Proceedings of the 18th Annual ACM Symposium on Theory of Computing*, pp. 316–329, 1986.

[11]

S. W. Golomb. A new arithmetic function of combinatorial significance.*J. Number Theory*,**5**:218–223, 1973.

[12]

J. L. Hafner and K. S. McCurley. On the distribution of running times of certain integer factoring algorithms.*J. Algorithms*,**10**(4):531–556, 1989.

[13]

G. H. Hardy and E. M. Wright.*An Introduction to the Theory of Numbers*, Oxford University Press, Oxford, 5th edition. 1979.

[14]

K. Ireland and M. Rosen.*A Classical Introduction to Modern Number Theory*. Springer-Verlag, New York, 1982.

[15]

W. B. Jurkat and H.-E. Richert. An improvement of Selberg's sieve method I.*Acta. Arith.*,**11**:217–240, 1965.

[16]

R. Karp and V. Ramachandran. Parallel algorithms for shared memory machines. In J. van Leeuwen, editor,*Algorithms and Complexity*, Chapter 17, pp. 871–941. Handbook of Theoretical Computer Science Series, Volume A. Elsevier, Amsterdam, and MIT Press, Cambridge, MA, 1990.

[17]

D. E. Knuth.*The Art of Computer Programming: Seminumerical Algorithms*, Volume 2, 2nd edition. Addison-Wesley, Reading, MA. 1981.

[18]

D. E. Knuth and L. Trabb Pardo. Analysis of a simple factorization algorithm.*Theoret. Comput. Sci.*,**3**:321–348, 1976.

[19]

A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse and J. M. Pollard. The number field sieve. In*Proceedings of the 22nd Annual ACM Symposium on Theory of Computing*, pp. 564–572, 1990.

[20]

H. W. Lenstra, Jr. Factoring integers with elliptic curves.*Ann. of Math.*,**126**:649–673, 1987.

[21]

V. Miller. Private communication, 1989.

[22]

C. A. Neff. Specified precision polynomial root isolation is in NC. In*Proceedings of 31st Annual IEEE Symposium on Foundations of Computer Science*, pp. 152–162, 1990.

[23]

V. Pan. Fast and efficient algorithms for sequential and parallel evaluation of polynomial zeros and of matrix polynomials. In*Proceedings of the 26th Annual IEEE Symposium on Foundations of Computer Science*, pp. 522–531, 1985.

[24]

J. M. Pollard. Theorems on factorization and primality testing.*Math. Proc. Cambridge Philos. Soc.*,**76**:521–528, 1974.

[25]

C. Pomerance. Fast, rigorous factorization and discrete logarithm algorithms. In D. S. Johnson, A. Nishizeke, A. Nozaki, and H. S. Wilf, editors,*Discrete Algorithms and Complexity: Proceedings of the Japan-US Joint Seminar*, pp. 119–143. Perspectives in Computing Series, Volume 15, Academic Press, Boston. 1987.

[26]

P. Pritchard. Fast compact prime number sieves (among others).*J. Algorithms*,**4**:332–344, 1983.

[27]

J. B. Rosser and L. Schoenfeld. Approximate formulas for some functions of prime numbers.*Illinois J. Math.*,**6**:64–94, 1962.

[28]

J. Shallit. Course Notes for Number Theory and Algorithms. Dartmouth College, 1989.

[29]

V. Shoup. On the deterministic complexity of factoring polynomials over finite fields.*Inform. Process. Lett.*,**33**:261–267, 1990.

[30]

E. C. Titchmarsh. A divisor problem.*Rend. Circ. Mat. Palermo*,**54**:414–429, 1930.

[31]

S. S. Wagstaff, Jr., Greatest of the least primes in arithmetic progressions having a certain modulus.*Math. Comp.*,**33**:1073–1080, 1979.