[AFP] J. Arazy, S. Fisher and J. Peetre,*Hankel operators on weighted Bergman spaces*, Amer. J. Math.**110** (1988), 989–1054.

[B] B. Berndtsson, Weighted estimates for\(\bar \partial \) in domains in C^{1}, Duke Math. J.**66** (1992), 239–255.

[H1] L. Hörmander,*An Introduction to Complex Analysis in Several Variables*, 3rd, ed. rev., North Holland, Amsterdan, 1990.

[H2] L. Hörmander,*An Introduction to Complex Analysis in Several Variables*, New York: Van Nortrand Reinhold, 1966.

[JPR] S. Janson, J. Peetre and R. Rochberg,*Hankel forms and the Fock space*, Rev. Mat. Iberoamericana**3** (1987), 61–138.

[K] S. G. Krantz,*Function Theory of Several Complex Variables*, 2nd. ed. Wadsworth, Belmont, 1992.

[KM] T. L. Kriete III and B. D. MacCluer,*Composition operators on large weighted Bergman spaces*, Indiana Univ. Math. J.**41** (1992), 755–788.

[LR] Peng Lin and R. Rochberg,*The essential norm of Hankel operator on the Bergman space*, Integral Equations and Operator Theory.**17** (1993), 361–372.

[Lu] D. Luecking,*Characterizations of certain classes of Hankel operators on the Bergman spaces of the unit disk*. J. Functional Analysis**110** (1992), 247–271.

[O] V. L. Oleinik,*Embedding theorems for weighted classes of harmonic and analytic functions*, J. Soviet Math.**9** (1978), 228–243.

[OP] V. L. Oleinik and G. S. Perel'man,*Carleson's imbedding theorem for a weighted Bergman space*, Mathematical Notes**57** (1990), 577–581.

[S] E. M. Stein,*Singular Integrals and Differentiability Properties of Functions*, Princeton Univ. Press. 1970.

[St] K. Stroethoff,*Hankel and Toeplitz operators on the Fock space*, Michigan Math. J.**39** (1992), 3–16.

[Tr] T. Trent,*A measure inequality*. preprint.