Skip to main content
Log in

Rational wavelet decompositions of transfer functions in hardy-sobolev classes

  • Published:
Mathematics of Control, Signals and Systems Aims and scope Submit manuscript

Abstract

The model approximation of transfer functions using rational wavelets (or molecular decompositions) is considered. By using techniques from Hardy-Sobolev spaces it is shown that Hilbert space methods such as a modified matching-pursuit algorithm and least-squares technique can be employed to obtain good approximations in bothH 2 andH norms. Several theoretical results are given on rates of convergence when the methods are applied to delay systems and fractional filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Baratchart, M. Olivi, and F. Wielonsky. Asymptotic properties of rationalL 2 approximation. Lecture Notes in Control and Information Sciences, vol.144, pp. 477–486. Springer-Verlag, Berlin, 1990.

    Google Scholar 

  2. L. Baratchart and M. Zerner. On the recovery of functions from pointwise boundary values in a Hardy-Sobolev class of the disc.J. Comput, Appl. Math., 46:255–269, 1993.

    Google Scholar 

  3. C. Bonnet. Approximation of infinite-dimensional discrete-time linear systems via balanced realizations and an application to fractional filters. Lecture Notes in Control and Information Sciences, vol. 185, pp. 574–584. Springer-Verlag, Berlin, 1993.

    Google Scholar 

  4. F. F. Bonsall. Decompositions of functions as sums of elementary functions.Quart. J. Math. Oxford Ser. (2), 37:129–136, 1986.

    Google Scholar 

  5. F. F. Bonsall. A general atomic decomposition theorem and Banach's closed range theorem.Quart. J. Math. Oxford Ser. (2), 42:9–14, 1991.

    Google Scholar 

  6. R. R. Coifman and R. Rochberg. Representation theorems for holomorphic and harmonic functions inL p.Asterisque, 77:12–66, 1980.

    Google Scholar 

  7. I. Daubechies.Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series on Applied Mathematics, vol. 61. SIAM, Philadelphia, PA, 1992.

    Google Scholar 

  8. C. Deniau, M. C. Viano, and G. Oppenheim. A class of fractional continuous-time processes.C. R. Acad. Sci. Paris Ser. 1 Math., 315:451–454, 1992.

    Google Scholar 

  9. R. A. DeVore and G. G. Lorentz.Constructive Approximation. Grundlehren der mathematischen Wissenschaften, vol. 303. Springer-Verlag, New York, 1993.

    Google Scholar 

  10. R. J. Duffin and A. C. Schaeffer. A class of nonharmonic Fourier series.Trans. Amer. Math. Soc., 72:341–366, 1952.

    Google Scholar 

  11. P. L. Duren.Theory of H p Spaces. Academic Press, New York, 1970.

    Google Scholar 

  12. K. Glover, R. F. Curtain, and J. R. Partington. Realization and approximation of linear infinite-dimensional systems with error bounds.SIAM J. Control Optim., 26:863–898, 1988.

    Google Scholar 

  13. K. Glover, J. Lam, and J. R. Partington. Rational approximation of a class of infinite-dimensional systems, I: Singular values of Hankel operators.Math. Control Signals Systems, 3:325–334, 1990.

    Google Scholar 

  14. K. Glover, J. Lam, and J. R. Partington. Rational approximation of a class of infinite-dimensional systems, II: Optimal convergence rates forL approximants.Math. Control Signals Systems, 4:233–246, 1991.

    Google Scholar 

  15. K. Glover, J. Lam, and J. R. Partington. Rational approximation of a class of infinitedimensional systems: the L2 case. In P. Nevai and A. Pinkus, editors,Progress in Approximation Theory. Academic Press, New York, 1991.

    Google Scholar 

  16. G. Gu, P. P. Khargonekar, and E. B. Lee. Approximation of infinite-dimensional systems.IEEE Trans. Automat. Control, 34:610–618, 1989.

    Google Scholar 

  17. P. Heuberger, P. Van den Hof, and O. Bosgra. Modelling linear dynamical systems through generalized orthonormal basis functions.Proc. 12th IF AC World Congress, Sydney, vol. 5, pp. 283–286, 1993.

    Google Scholar 

  18. J. R. Klauder and R. F. Streater. Wavelets and the Poincaré half-plane.J. Math. Phys., 35:471–478, 1994.

    Google Scholar 

  19. D. H. Luecking. Forward and reverse Carleson inequalities for functions in Bergman spaces and their derivatives.Amer. J. Math., 107:85–111, 1985.

    Google Scholar 

  20. D. H. Luecking. Representation and duality in weighted spaces of analytic functions.Indiana Univ. Math. J., 34:319–336, 1985.

    Google Scholar 

  21. P. M. Mäkilä. Laguerre series approximation of infinite dimensional systems.Automatica, 26:985–995, 1990.

    Google Scholar 

  22. S. Mallat and Z. Zhang. Matching pursuit with time-frquency dictionaries.IEEE Trans. Signal Process., 41:3397–3415, 1993.

    Google Scholar 

  23. Y. Meyer.Wavelets and Operators. Cambridge Studies in Advanced Mathematics, vol. 37. Cambridge University Press, Cambridge, 1992.

    Google Scholar 

  24. J. R. Partington.An Introduction to Hankel Operators. Cambridge University Press, Cambridge, 1989.

    Google Scholar 

  25. J. R. Partington. Approximation of delay systems by Fourier-Laguerre series.Automatica, 27:569–572, 1991.

    Google Scholar 

  26. Y. C. Pati. Wavelets and Time-Frequency Methods in Linear Systems and Neural Networks. Ph.D. thesis, University of Maryland, 1992.

  27. Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, Orthogonal matching pursuit; recursive function approximation with applications to wavelet decompositions.Proc. 27th Annual Asilomar Conference on Signals Systems and Computers, Nov. 1–3, 1993.

  28. A. Pinkus.n-Widths in Approximation Theory. Springer-Verlag, New York, 1985.

    Google Scholar 

  29. B. Wahlberg and P. M. Mäkilä. On approximations of stable linear dynamical systems using Laguerre and Kautz functions.Automatica, to appear.

Download references

Author information

Authors and Affiliations

Authors

Additional information

The research of the first author was supported by E.P.S.R.C.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dudley Ward, N.F., Partington, J.R. Rational wavelet decompositions of transfer functions in hardy-sobolev classes. Math. Control Signal Systems 8, 257–278 (1995). https://doi.org/10.1007/BF01211862

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01211862

Key words

Navigation