1.

S. Smale, “Differentiable dynamical systems,” Bull. Amer. Math. Soc.,**73**, No. 6, 113–185 (1967).

2.

A. N. Bezdenezhnykh and V. Z. Grines, “Realization of gradient-like diffeomorphisms of two-dimensional manifolds,” in: N. F. Otrokov (ed.), Differential and Integral Equations [in Russian], Gor'kii Gos. Univ., Gor'kii (1985), pp. 33–37.

3.

A. N. Bezdenezhnykh and V. Z. Grines, “Diffeomorphisms with orientable heteroclinic sets on two-dimensional manifolds,” in: E. A. Leontovich-Andronovoi (ed.), Methods of the Qualitative Theory of Differential Equations [in Russian], Gor'kii (1985), pp. 139–152.

4.

A. N. Bezdenezhnykh and V. Z. Grines, “Dynamic properties and topological classification of gradient-like diffeomorphisms on two-dimensional manifolds, Part 1, in: E. A. Leontovich-Andronovoi (ed.), Methods of the Qualitative Theory of Differential Equations [in Russian], Gor'kii (1985), pp. 139–152; Part 2, ibid., (1987), pp. 24–32.

5.

E. A. Borevich, “Conditions for topological equivalence of two-dimensional Morse-Smale diffeomorphisms,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 11, 12–17 (1980).

6.

E. A. Borevich, “Conditions for topological equivalence of two-dimensional Morse-Smale diffeomorphisms,” Differents. Uravn.,**17**, No. 8, 1481–1482 (1981).

7.

E. A. Borevich, “Topological equivalence of two-dimensional Morse-Smale diffeomorphisms,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 4, 3–6 (1984).

8.

E. A. Borevich, “Two-dimensional Morse-Smale systems having oriented heteroclinic relations,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 9, 77–79 (1989).

9.

Ya. L. Umanskii, “Necessary and sufficient conditions for the topological equivalence of three-dimensional Morse-Smale dynamical systems with a finite number of singular trajectories,” Mat. Sborn.,**181**, No. 2, 212–239 (1990).

10.

J. Palis, “On Morse-Smale dynamical systems,” Topology,**8**, No. 4, 385–404 (1969).

11.

M. Peixoto, “On the classification of flows on two-manifolds,” in: M. Peixoto (ed.), Dynamical Systems. Proc. Symp. held at the Univ. of Bahia, Salvador, Brasil, 1971, Academic Press, New York-London (1973), pp. 389–419.

12.

J. Palis and S. Smale, “Structural stability theorems,” [Russian translation], Matematika,**13**, No. 2, 145–155 (1969).

13.

V. S. Medvedev, “Behavior of trajectories of a cascade in a neighborhood of an invariant set,” Differents. Uravn.,**13**, 1192–1201 (1977).

14.

S. Kh. Aranson and V. Z. Grines, “Cascades on surfaces,” in: Dynamical Systems 9. Itogi Nauki i Tekhniki. Sovremennye Problemy Matematiki. Fundamental'nye Napravleniya,**66**, 148–187 (1991).