Combinatorica

, Volume 11, Issue 2, pp 145–155

Clean triangulations

  • Nora Hartsfield
  • Gerhard Ringel
Article

DOI: 10.1007/BF01206358

Cite this article as:
Hartsfield, N. & Ringel, G. Combinatorica (1991) 11: 145. doi:10.1007/BF01206358

Abstract

A polyhedron on a surface is called a clean triangulation if each face is a triangle and each triangle is a face. LetSp (resp.Np) be the closed orientable (resp. nonorlentable) surface of genusp. If τ(S) is the smallest possible number of triangles in a clean triangulation ofS, the results are: τ(N1)=20, τ(S1)=24, limτ(Sp)p−1=4, limτ(Np)p−1=2 forp→∞.

AMS subject classification (1980)

05 C 10

Copyright information

© Akadéiai Kiadó 1991

Authors and Affiliations

  • Nora Hartsfield
    • 1
    • 2
  • Gerhard Ringel
    • 1
  1. 1.University of CaliforniaSanta CruzUSA
  2. 2.Western Washington UniversityBellinghamUSA