Communications in Mathematical Physics

, Volume 105, Issue 3, pp 415–441

Symmetry-breaking for solutions of semilinear elliptic equations with general boundary conditions

  • Joel A. Smoller
  • Arthur G. Wasserman
Article

DOI: 10.1007/BF01205935

Cite this article as:
Smoller, J.A. & Wasserman, A.G. Commun.Math. Phys. (1986) 105: 415. doi:10.1007/BF01205935

Abstract

We study the bifurcation of radially symmetric solutions of Δ+f(u)=0 onn-balls, into asymmetric ones. We show that ifu satisfies homogeneous Neumann boundary conditions, the asymmetric components in the kernel of the linearized operators can have arbitrarily high dimension. For general boundary conditions, we prove some theorems which give bounds on the dimensions of the set of asymmetric solutions, and on the structure of the kernels of the linearized operators.

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Joel A. Smoller
    • 1
  • Arthur G. Wasserman
    • 1
  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA