Constructive Approximation

, Volume 8, Issue 4, pp 463–535

# Christoffel functions, orthogonal polynomials, and Nevai's conjecture for Freud weights

• A. L. Levin
• D. S. Lubinsky
Article

DOI: 10.1007/BF01203463

Levin, A.L. & Lubinsky, D.S. Constr. Approx (1992) 8: 463. doi:10.1007/BF01203463

## Abstract

We obtain upper and lower bounds for Christoffel functions for Freud weights by relatively new methods, including a new way to estimate discretization of potentials. We then deduce bounds for orthogonal polynomials onℝ thereby largely resolving a 1976 conjecture of P. Nevai. For example, let W:=e−Q, whereQ:ℝ→ℝ is even and continuous inℝ, Q" is continuous in (0, ∞) andQ'>0 in (0, ∞), while, for someA, B,
$$1< A \leqslant \frac{{(d/dx)(xQ'(x))}}{{Q'(x)}} \leqslant B,x \in (0,\infty )$$
Letan denote thenth Mhaskar-Rahmanov-Saff number forQ, andL>0. Then, uniformly forn≥1 and |x|≤an(1+Ln−2/3),
$$\lambda _n (W^2 ,x) \sim \frac{{a_n }}{n}W^2 (x)\left( {\max \left\{ {n^{ - 2/3} ,1 - \frac{{|x|}}{{a_n }}} \right\}} \right)^{ - 1/2}$$

Moreover, for all x εℝ, we can replace ∼ by ≥. In particular, these results apply toW(x):=exp(-|x|α), α>1. We also obtain lower bounds for allx εℝ, when onlyA>0, but this necessarily requires a more complicated formulation.

We deduce that thenth orthonormal plynomialpn(W2, ·). forW2 satisfies
$$\mathop {\sup }\limits_{x \in \mathbb{R}} |p_n (W^2 ,x)|W(x)\left| {1 - \frac{{|x|}}{{a_n }}} \right|^{1/4} \sim a_n^{ - 1/2}$$
and
$$\mathop {\sup }\limits_{x \in \mathbb{R}} |p_n (W^2 ,x)|W(x) \sim a_n^{ - 1/2} n^{1/6} .$$

In particular, this applies toW(x):=exp(-|x|α), α>1.

### AMS classification

Primary 41A17 42C05 Secondary 41A10

### Key words and phrases

Freud weights Exponential weights Orthonormal polynomials Christoffel functions Markov-Bernstein inequalities Potentials Discretization of potentials Nevai's conjecture