Find out how to access previewonly content
Correlation inequalities and a conjecture for permanents
 Yosef Rinott,
 Michael Saks
 … show all 2 hide
Rent the article at a discount
Rent now* Final gross prices may vary according to local VAT.
Get AccessAbstract
This paper presents conditions on nonnegative real valued functionsf _{1},f _{2},...,f _{ m } andg _{1},g _{2},...g _{ m } implying an inequality of the type
$$\mathop \Pi \limits_{i = 1}^m \int {f_i (x)d\mu } (x) \leqslant \mathop \Pi \limits_{i = 1}^m \int {g_i (x)d\mu } (x).$$
 Title
 Correlation inequalities and a conjecture for permanents
 Journal

Combinatorica
Volume 13, Issue 3 , pp 269277
 Cover Date
 199309
 DOI
 10.1007/BF01202353
 Print ISSN
 02099683
 Online ISSN
 14396912
 Publisher
 SpringerVerlag
 Additional Links
 Topics
 Keywords

 60 C 05
 60 E 15
 06 D 99
 05 D 99
 06 A 07
 Industry Sectors
 Authors

 Yosef Rinott ^{(1)}
 Michael Saks ^{(2)} ^{(3)}
 Author Affiliations

 1. Department of Mathematics, UCSD, 92122, La Jolla, CA
 2. Department of Maématics, Rutgers University, 08903, New Brunswick, NJ
 3. Department of Computer Science and Engineering, UCSD, 92122, La Jolla, CA