[1]

N. Alon, M. Katchalski, andW. R. Pulleyblank: Cutting disjoint disks by straight lines,*Discrete and Computational Geometry*
**4** (1989), 239–243.

[2]

I. Althöfer, G. Das, D. Dobkin, D. Joseph, andJ. Soares: On sparse spanners of weighted graphs,*Discrete and Computational Geometry*
**9** (1993), 81–100.

[3]

E. M. Andreev: Convex polyhedra in Lobačevskiî spaces,*Mat. Sb. (N.S.)*
**81** (123) (1970), 445–478. English translation:*Math. USSR Sb.*
**10** (1970), 413–440.

[4]

E. M. Andreev: Convex polyhedra of finite volume in Lobačevskiî space,*Mat. Sb. (N.S.)*
**83** (125) (1970), 256–260. English translation:*Math. USSR Sb.*
**12** (1970), 255–259.

[5]

J. Arias-de-Reyna, andL. Rodrígues-Piazza: Finite metric spaces needing high dimension for Lipschitz embeddings in Banach spaces,*Israel J. Math.*
**79** (1992), 103–111.

[6]

Y. Aumann, andY. Rabani: An*O*(log*k*) approximate min-cut max-flow theorem and approximation algorithm, preprint, 1994.

[7]

B. Awerbuch, andD. Peleg: Sparse partitions,*FOCS*
**31** (1990), 503–513.

[8]

L. Babai, andD. Frankl:*Linear Algebra Methods in Combinatorics*, Preliminary Version 2, Department of Computer Science, The University of Chicago, Chicago, 1992.

[9]

K. Ball: Isometric embedding in*l*
_{p}-spaces,*Europ. J. Combinatorics*
**11** (1990), 305–311.

[10]

B. Berger: The fourth moment method,*SODA*
**2** (1991), 373–383.

[11]

L. M. Blumenthal:*Theory and Applications of Distance Geometry*, Chelsea, New York, 1970.

[12]

J. Bourgain: On Lipschitz embedding of finite metric spaces in Hilbert space,*Israel J. Math.*
**52** (1985), 46–52.

[13]

L. Carroll:*Through the Looking-Glass and what Alice Found There*, Chapter 6, Pan Books, London, 1947.

[14]

F. R. K. Chung: Separator theorems and their applications, in:*Paths, Flows, and VLSI-Layout*, (B. Korte, L. Lovász, H. J. Prömel, and A. Schrijver eds.) Springer, Berlin-New York, 1990, 17–34.

[15]

E. Cohen: Polylog-time and near-linear work approximation scheme for undirected shortest paths,*STOC*
**26** (1994), 16–26.

[16]

L. J. Cowen: On local representations of graphs and networks, PhD dissertation, MIT/LCS/TR-573, 1993.

[17]

L. Danzer, andB. Grünbaum: Über zwei Probleme bezüglich konvexer Körper von P. Erdős und von V. L. Klee,*Math. Zeitschr.*
**79** (1962), 95–99.

[18]

M. Deza, andM. Laurent: Applications of cut polyhedra, Liens-92-18, September 1992.

[19]

M. Deza, andH. Maehara: Metric transforms and Euclidean embeddings,*Trans. AMS*
**317** (1990), 661–671.

[20]

R. O. Duda, andP. E. Hart:*Pattern Classification and Scene Analysis*, John Wiley and Sons, New York, 1973.

[21]

P. Frankl, andH. Maehara: The Johnson-Lindenstrauss lemma and the sphericity of some graphs,*J. Comb. Th. B*
**44** (1988), 355–362.

[22]

P. Frankl, andH. Maehara: On the contact dimension of graphs,*Discrete and Computational Geometry*
**3** (1988), 89–96.

[23]

N. Garg: A deterministic*O*(log*k*)-approximation algorithm for the sparsest cut, preprint, 1995.

[24]

N. Garg, V. V. Vazirani, andM. Yannakakis: Approximate max-flow min-(multi)cut theorems and their applications,*STOC*
**25** (1993), 698–707.

[25]

A. A. Giannopoulos: On the Banach-Mazur distance to the cube, to appear in:*Geometric Aspects of Functional Analysis*.

[26]

M. X. Goemans, andD. P. Williamson: 878-Approximation algorithms for MAX CUT and MAX 2SAT,*STOC*
**26** (1994), 422–431.

[27]

R. L. Graham, andP. M. Winkler: On isometric embeddings of graphs,*Trans. AMS*
**288** (1985), 527–536.

[28]

W. Holsztynski: ℝ^{n} as a universal metric space, Abstract 78T-G56,*Notices AMS*
**25** (1978), A-367.

[29]

T. C. Hu: Multicommodity network flows,*Operations Research*
**11** (1963), 344–360.

[30]

F. Jaeger: A survey of the cycle double cover conjecture,*Annals of Discrete Math.*
**27** (1985), 1–12.

[31]

W. B. Johnson, andJ. Lindenstrauss: Extensions of Lipschitz mappings into a Hilbert space,*Contemporary Mathematics*
**26** (1984), 189–206.

[32]

W. B. Johnson, J. Lindenstrauss, andG. Schechtman: On Lipschitz embedding of finite metric spaces in low dimensional normed spaces, in:*Geometric Aspects of Functional Analysis*, (J. Lindenstrauss and V. Milman eds.) LNM 1267, Springer, Berlin-New York, 1987, 177–184.

[33]

D. Karger, R. Motwani, andM. Sudan: Approximate graph coloring by semidefinite programming,*FOCS*
**35** (1994), 2–13.

[34]

A. K. Kelmans: Graph planarity and related topics,*Contemporary Mathematics*
**147** (1993), 635–667.

[35]

P. Klein, A. Agrawal, R. Ravi, andS. Rao: Approximation through multicommodity flow,*FOCS*
**31** (1990), 726–737.

[36]

P. Koebe: Kontaktprobleme der konformen Abbildung, Berichte Verhande. Sächs. Akad. Wiss. Leipzig,*Math.-Phys. Klasse*
**88** (1936), 141–164.

[37]

T. Leighton, andS. Rao: An approximate max-flow min-cut theorem for uniform multicommodity flow problems with applications to approximation algorithms,*FOCS*
**29** (1988), 422–431.

[38]

M. Linial, N. Linial, N. Tishby, andG. Yona: Work in progress, 1995.

[39]

N. Linial: Local-global phenomena in graphs,*Combinatorics, Probability and Computing*
**2** (1993), 491–503.

[40]

N. Linial, L. London, andYu. Rabinovich: The geometry of graphs and some of its algorithmic applications,*FOCS*
**35** (1994), 577–591.

[41]

N. Linial, L. Lovász, andA. Wigderson: Rubber bands, convex embeddings and graph connectivity,*Combinatorica*
**8** (1988), 91–102.

[42]

N. Linial, D. Peleg, Yu. Rabinovich, andM. Saks: Sphere packing and local majorities in graphs, The 2nd Israel Symp. on Theory and Computing Systems (1993), 141–149.

[43]

N. Linial, andM. Saks: Low diameter graph decompositions,*SODA*
**2** (1991), 320–330. Journal version:*Combinatorica*
**13** (1993), 441–454.

[44]

J. H. van Lint, andR. M. Wilson:*A Course in Combinatorics*, Cambridge University Press, Cambridge, 1992.

[45]

L. Lovász: On the Shannon capacity of a graph,*IEEE Trans. Inf. Th.*
**25** (1979), 1–7.

[46]

L. Lovász, M. Saks, andA. Schrijver: Orthogonal representations and connectivity of graphs,*Linear Algebra Appl.* 114–115 (1989), 439–454.

[47]

J. Matoušek: Computing the center of planar point sets, in:*Discrete and computational Geometry: papers from the DIMACS special year*, (J. E. Goodman, R. Pollack, and W. Steiger eds.) AMS, Providence, 1991, 221–230.

[48]

J. Matoušek: Note on bi-Lipschitz embeddings into normed spaces,*Comment. Math. Univ. Carolinae*
**33** (1992), 51–55.

[49]

G. L. Miller, S-H. Teng, andS. A. Vavasis: A unified geometric approach to graph separators,*FOCS*
**32** (1991), 538–547.

[50]

G. L. Miller, andW. Thurston: Separators in two and three dimensions,*STOC*
**22** (1990), 300–309.

[51]

D. Peleg, andA. Schäffer: Graph spanners,*J. Graph Theory*
**13** (1989), 99–116.

[52]

G. Pisier:*The Volume of Convex Bodies and Banach Space Geometry*, Cambridge University Press, Cambridge, 1989.

[53]

S. A. Plotkin, andÉ. Tardos: Improved bounds on the max-flow min-cut ratio for multicommodity flows,*STOC*
**25** (1993), 691–697.

[54]

Yu. Rabinovich, andR. Raz: On embeddings of finite metric spaces in graphs with a bounded number of edges, in preparation.

[55]

J. Reiterman, V. Rödl, andE. Šiňajová: Geometrical embeddings of graphs,*Discrete Mathematics*
**74** (1989), 291–319.

[56]

N. Robertson, andP. D. Seymour: Graph Minors I–XX,*J. Comb. Th. B* (1985-present).

[57]

B. Rothschild, andA. Whinston: Feasibility of two-commodity network flows,*Operations Research*
**14** (1966), 1121–1129.

[58]

J. S. Salowe: On Euclidean graphs with small degree,*Proc. 8th ACM Symp. Comp. Geom.* (1992), 186–191.

[59]

D. D. Sleator, R. E. Tarjan, andW. P. Thurston: Rotation distance, triangulations, and hyperbolic geometry,*J. AMS*
**1** (1988), 647–681.

[60]

W. P. Thurston: The finite Riemann mapping theorem, invited address, International Symposium in Celebration of the Proof of the Bieberbach Conjecture, Purdue University, 1985.

[61]

D. J. A. Welsh:*Complexity: Knots, Colourings and Counting*, LMS Lecture Note Series 186, Cambridge University Press, Cambridge, 1993.

[62]

P. M. Winkler: Proof of the squashed cube conjecture,*Combinatorica*
**3** (1983), 135–139.

[63]

H. S. Witsenhausen: Minimum dimension embedding of finite metric spaces,*J. Comb. Th. A*
**42** (1986), 184–199.

[64]

I. M. Yaglom, andV. G. Boltyanskiî:*Convex Figures*, Holt, Rinehart and Winston, New York, 1961.