[1]

N. Aronszajn: Theory of reproducing kernels,*Trans. Amer. Math. Soc.*,**68** (1950), 337–404.

[2]

L. de Branges:*Hilbert Spaces of Entire Analytic Functions*. Prentice-Hall, Englewood Cliffs, N.J. 1968.

[3]

L. de Branges, J. Rovnyak: Canonical models in quantum mechanics, in*Perturbation Theory and its Applications in Quantum Mechanics*, Proc. Adv. Sem. Math. Res. Center, Madison WS 1965, pp. 295–392.

[4]

T. Constantinescu, A. Gheondea. Elementary rotations of operators in Kreîn spaces,*J. Operator Theory*,**29** (1993), 167–203.

[5]

T. Constantinescu, A. Gheondea: Representations of Hermitian Kernels by means of Kreîn spaces, preprint no. 15, Institutul de Matematică al Academiei Române, Bucureşti 1996.

[6]

J. Dieudonné: Quasi-hermitian operators, in*Proceedings of International Symposium on Linear Spaces*, Jerusalem 1961, pp. 115–122.

[7]

A. Dijksma, H. Langer, H. de Snoo: Unitary colligations in Kreîn spaces and their role in extension theory of isometric and symmetric linear relations in Hilbert spaces, in*Functional Analysis II*, Lecture Notes in Mathematics, no**1242** Springer Verlag, Berlin-Heidelberg-New York 1987, pp. 123–143.

[8]

M.A. Dritschel: A method for constructing invariant subspaces for some operators on Kreîn spaces, in*Operator Theory: Advances and Applications*, Vol. 61, Birkhäuser Verlag, Basel 1993.

[9]

P.A. Fillmore, J.P. Williams: On operator ranges,*Adv. in Math.*
**7** (1971), 254–281.

[10]

P.A. Fuhrmann:*Linear Systems and Operators in Hilbert Space*, McGraw-Hill, 1981.

[11]

A. Gheondea, R.J. Ober: Completely*J*-positive linear systems of finite order,*Math. Nachr.*,**203** (1999), 75–101.

[12]

K. Glover, R.F. Curtain, J.R. Partington: Realisation and approximation of linear infinite dimensional systems with error bounds,*SIAM J. Control and Optimization*,**26** (1988), 863–898.

[13]

M.G. Kreîn: On linear completely continuous operators in functional spaces with two norms, (Ukrainian),*Zbirnik Prac. Inst. Mat. Akad. Nauk USSR*,**9** (1947), 104–129.

[14]

P.D. Lax: Symmetrizable linear transformations,*Comm. Pure Appl. Math.*
**7** (1954). 633–647.

[15]

A.V. Megretskii, V.V. Peller, S.R. Treil: The inverse spectral problem for self-adjoint Hankel operators,*Acta Mathematica*,**174** (1995), 241–309.

[16]

B.C. Moore: Principal component analysis in linear systems: controllability, observability and model reduction,*IEEE Transactions on Automatic Control*,**26** (1981), 17–32.

[17]

R.J. Ober, S. Montgomery-Smith: Bilinear transformation of infinitedimensional state-space systems and balanced realizations of nonrational transfer functions,*SIAM Journal on Control and Optimization*,**28** (1990), 438–465.

[18]

W.T. Reid: Symmetrizable completely continuous linear transformations in Hilbert space,*Duke Math. J.*
**18** (1951), 41–56.

[19]

L. Schwartz: Sous espaces Hilbertiens d'espaces vectoriel topologiques et noyaux associés (noyaux reproduisants).*J. d'Analyse Math.*
**13** (1964), 115–256.

[20]

J. Weidmann:*Linear Operators in Hilbert space*, Springer Verlag, Berlin-Heidelberg-New-York 1980.

[21]

N.J. Young: Balanced realizations in infinite dimensions, in*Operator Theory: Advances and Applications*, Vol.**19**, Birkhäuser Verlag, Basel, 1986 pp. 449–471.

[22]

N.J. Young: Private communication.