Probability Theory and Related Fields

, Volume 90, Issue 2, pp 175–202

Decroissance exponentielle du noyau de la chaleur sur la diagonale (I)

Authors

  • G. Ben Arous
    • Department de MathématiquesÉcole Normale Supérieure
  • R. Léandre
    • Université Louis Pasteur
Article

DOI: 10.1007/BF01192161

Cite this article as:
Ben Arous, G. & Léandre, R. Probab. Th. Rel. Fields (1991) 90: 175. doi:10.1007/BF01192161

Summary

We give examples based upon large deviation's theory where the heat kernel of a degenerate diffusion has an exponential decay over the diagonal. Using Malliavin calculus, we give conditions for a more generalized heat kernel to have an exponential decay over the diagonal. We give lower bound in some particular case by using the Bismut's condition.

Copyright information

© Springer-Verlag 1991