Integral Equations and Operator Theory

, Volume 24, Issue 4, pp 497–501

Some generalized theorems onp-hyponormal operators

  • Ariyadasa Aluthge
Short Comunications

DOI: 10.1007/BF01191623

Cite this article as:
Aluthge, A. Integr equ oper theory (1996) 24: 497. doi:10.1007/BF01191623

Abstract

A bounded linear operatorT is calledp-Hyponormal if (T*T)p(TT*)p, 0<p≤1. In Aluthge [1], we studied the properties of p-hyponormal operators using the operator\(\tilde T = |T|^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} U|T|^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \). In this work we consider a more general operator\(T_ \in = |T|^ \in U|T|^{1 - \in } , 0< \in \leqslant 1/2\), and generalize some properties of p-hyponormal operators obtained in [1].

1980 Mathematics Classification (1985 Revision)

Primary 47B20

Copyright information

© Birkhäuser-Verlag 1996

Authors and Affiliations

  • Ariyadasa Aluthge
    • 1
  1. 1.Department of MathematicsMarshall UniversityHuntingtonU.S.A.