[1]

A. V. Aho, J. E. Hopcroft, and J. D. Ullman.*Data Structures and Algorithms*. Addison-Wesley, Reading, MA, 1980.

[2]

E. Anagnostou. Progress in Minimum Weight Triangulation. Technical Report 232/90, Department of Computer Science, University of Toronto, 1990.

[3]

M. R. Garey and D. S. Johnson.*Computers and Intractability: A Guide to the Theory of NP-Completeness*. Freeman, New York, 1979.

[4]

P. D. Gilbert. New Results on Planar Triangulations. M.Sc. thesis, Report No. UILUENG 78 2243, University of Illinois, 1979.

[5]

L. S. Heath and S. V. Pemmaraju. New Results for the Minimum Weight Triangulation Problem. Report No. TR 92-30, Department of Computer Science, Virginia Polytechnic Institute and State University, 1992.

[6]

D. G. Kirkpatrick, A note on Delaunay and optimal triangulations.*Information Processing Letters*,**10**, 1980, 127–128.

[7]

C. Levcopoulos and A. Lingas. On approximation behavior of the greedy triangulation for convex polygons.*Algorithmica*,**2**, 1987, 175–193.

[8]

C. Levcopoulos. An 0(√n) lower bound for the non-optimality of the greedy triangulation.*Information Processing Letters*,**25**, 1987, 247–251.

[9]

C. Levcopoulos and A. Lingas. Fast algorithms for the greedy triangulation.*Proceedings of the 2nd Scandinavian Workshop on Algorithm Theory*, Lecture Notes in Computer Science, Vol. 447, Springer-Verlag, Berlin, 1990, pp. 238–250.

[10]

A. Lingas. The greedy and Delaunay triangulations are not bad in the average case and minimum weight triangulation of multi-connected polygons is NP-complete.*Foundations of Computation Theory*, Lecture Notes in Computer Science, Vol. 158, Springer-Verlag, Berlin, 1983, pp. 270–284.

[11]

A. Lingas. A new heuristic for the minimum weight triangulation.*SIAM Journal on Algebraic and Discrete Methods*,**8**, 1987, 646–658.

[12]

E. L. Lloyd. On triangulations of a set of points in the plane.*Proceedings of the Eighteenth IEEE Symposium on Foundations of Computer Science*, 1977, pp. 228–240.

[13]

G. K. Manacher and A. L. Zobrist. Neither the greedy nor the Delaunay triangulation of a planar point set approximates the optimal triangulation.*Information Processing Letters*,**9**, 1979, 31–34.

[14]

D. A. Plaisted and J. Hong. A heuristic triangulation algorithm.*Journal of Algorithms*,**8**, 1987, 405–437.

[15]

M. I. Shamos and D. Hoey. Closest point problems.*Proceedings of the Sixteenth IEEE Symposium on Foundations of Computer Science*, 1975, 151–162.

[16]

W. D. Smith. Studies in Computational Geometry Motivated by Mesh Generation. Ph.D. dissertation, Princeton University, 1989.

[17]

P. Yoeli. Compilation of data for computer-assisted relief cartography. In*Display and Analysis of Spatial Data*, J. C. Davis and M. J. McCullagh, editors, Wiley, New York, 1975.