Upward drawings of triconnected digraphs
 P. Bertolazzi,
 G. Di Battista,
 G. Liotta,
 C. Mannino
 … show all 4 hide
Rent the article at a discount
Rent now* Final gross prices may vary according to local VAT.
Get AccessAbstract
A polynomialtime algorithm for testing if a triconnected directed graph has an upward drkwing is presented. An upward drkwing is a planar drkwing such that all the edges flow in a common direction (e.g., from bottom to top). The problem arises in the fields of automatic graph drkwing and ordered sets, and has been open for several years. The proposed algorithm is based on a new combinatorial characterization that maps the problem into a maxflow problem on a sparse network; the time complexity isO(n+r ^{ 2) }, wheren is the number of vertices andr is the number of sources and sinks of the directed graph. If the directed graph has an upward drkwing, the algorithm allows us to construct one easily.
 C. Berge,Graphs, NorthHolland, Amsterdam, 1985.
 K. Booth and G. Lueker, Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQTree Algorithms,J. Comput. System Sci., vol. 13, pp. 335–397, 1976.
 N. Chiba, T. Nishizeki, S. Abe, and T. Ozkwa, A Linear Algorithm for Embedding Planar Graphs Using PQTrees,J. Comput. System Sci., vol. 30, pp. 54–76, 1985.
 H. de Fraysseix and P. Rosenstiehl, A Depth First Characterization of Planarity,Ann. Discrete Math., vol. 13, pp. 75–80, 1982.
 G. Di Battista, W. P. Liu, and I. Rival, Bipartite Graphs, Upward Drkwings, and Planarity,Inform. Process. Lett., vol. 36, pp. 317–322, 1990.
 G. Di Battista and R. Tamassia, Algorithms for Plane Representations of Acyclic Digraphs,Theoret. Comput. Sci., vol. 61, pp. 175–198, 1988.
 G. Di Battista and R. Tamassia, Incremental Planarity Testing,Proc. 30th IEEE Symposium on Foundations of Computer Science, pp. 436–441, 1989.
 G. Di Battista, R. Tamassia, and I. G. Tollis, Area Requirement and Symmetry Display of Planar Upward Drkwings,Discrete Comput. Geom., vol. 7, pp. 381–401, 1992.
 P. Eades and R. Tamassia, Algorithms for Drkwing Graphs: An Annotated Bibliography, Tech. Report No. CS8909, Brown University, 1989.
 P. Eades and L. Xuemin, How To Draw a Directed Graph,Proc. IEEE Workshop on Visual Languages, pp. 13–17, 1989.
 S. Even,Graph Algorithms, Computer Science Press, Rockville, MD, 1979.
 J. Hopcroft and R. E. Tarjan, Efficient Planarity Testing,J. Assoc. Comput. Mach., vol. 21, no. 4, pp. 549–568, 1974.
 M. D. Hutton and A. Lubiw, Upward Planar Drawing of Single Source Acyclic Digraphs,Proc. 2nd ACMSIAM Symposium on Discrete Algorithms, pp. 203–211, 1991.
 R. Jégan, R. Nowakowski, and I. Rival, The Diagram Invariant Problem for Planar Lattices,Acta Sci. Math. (Szeged), vol. 51, pp. 103–121, 1987.
 D. Kelly, Fundamentals of Planar Ordered Sets,Discrete Math., vol. 63, pp. 197–216, 1987.
 D. Kelly and I. Rival, Planar Lattices,Canad. J. Math., vol. 27, pp. 636–665, 1975.
 A. Lempel, A. Even, and I. Cederbaum, An Algorithm for Planarity Testing of Graphs,Theory of Graphs (International Symposium, Rome, 1966) (P. Rosenstiehl, ed.), Gordon and Breach, New York, pp. 215–232, 1967.
 L. Lovasz and M. D. Plummer,Matching Theory, Annals of Discrete Mathematics, vol. 29, NorthHolland, Amsterdam, p. 71, 1986.
 S. M. Malitz and A. Papakostas, On the Angular Resolution of Planar Graphs,Proc. ACM Symposium on Theory of Computing, 1992.
 T. Nishizeki and N. Chiba,Planar Graphs: Theory and Algorithms, Annals of Discrete Mathematics, NorthHolland, Amsterdam, 1988.
 C. Platt, Planar Lattices and Planar Graphs,J. Combin. Theory Ser. B, vol. 21, pp. 30–39, 1976.
 I. Rival, The Diagram, inGraphs and Orders (I. Rival, ed.), Reidel, Dordrecht, pp. 103–133, 1985.
 I. Rival, Graphical Data Structures for Ordered Sets, inAlgorithms and Orders (I. Rival, ed.), Kluwer, Boston, pp. 3–31, 1989.
 I. Rival and J. Urrutia, Representing Orders on the Plane by Translating Convex Figures,Order, vol. 4, pp. 319–339, 1988.
 K. Sugiyama, S. Tagkwa, and M. Toda, Methods for Visual Understanding of Hierarchical Systems,IEEE Trans. Systems Man Cybernet., vol. 11, pp. 109–125, 1981.
 R. Tamassia, On Embedding a Graph in the Grid with the Minimum Number of Bends,SIAM J. Comput., vol. 16, pp. 421–444, 1987.
 R. Tamassia, G. Di Battista, and C. Batini, Automatic Graph Drawing and Readability of Diagrams,IEEE Trans. Systems Man Cybernet., vol. 18, pp. 61–79, 1988.
 R. Tamassia and I. G. Tollis, A Unified Approach to Visibility Representations of Planar Graphs,Discrete Comput. Geometry, vol. 1, pp. 321–341, 1986.
 C. Thomassen, Planar Acyclic Oriented Graphs,Order, vol. 5, pp. 349–361, 1989.
 W. Trotter and J. Moore, Jr., The Dimension of Planar Posets,J. Combin. Theory Ser. B, vol. 22, pp. 54–67, 1977.
 G. Vijayan, Geometry of Planar Graphs with Angles,Proc. 2nd ACM Symposium on Computational Geometry, pp. 116–124, 1986.
 H. Whitney, Congruent Graphs and the Connectivity of Graphs,Amer. J. Math., vol. 54, pp. 150–168, 1932.
 Title
 Upward drawings of triconnected digraphs
 Journal

Algorithmica
Volume 12, Issue 6 , pp 476497
 Cover Date
 19941201
 DOI
 10.1007/BF01188716
 Print ISSN
 01784617
 Online ISSN
 14320541
 Publisher
 SpringerVerlag
 Additional Links
 Topics
 Keywords

 Planarity
 Automatic graph drkwing
 Hierarchical structures
 Maxflow
 stDigraphs
 Acyclic digraphs
 Ordered sets
 Industry Sectors
 Authors

 P. Bertolazzi ^{(1)}
 G. Di Battista ^{(2)}
 G. Liotta ^{(2)}
 C. Mannino ^{(1)}
 Author Affiliations

 1. IASICNR, Viale Manzoni, 3000185, Roma, Italy
 2. Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”, Via Salaria, 11300198, Roma, Italy