[AE]

F. Aurenhammer and H. Edelsbrunner, An optimal algorithm for constructing the weighted Voronoi diagram in the plane,*Pattern Recognition*,**17** (1984), 251–275.

[AS]

C. R. Aragon and R. G. Seidel, Randomized binary search trees,*Proc. 30th Symposium on Foundations of Computer Science*, pp. 450–455, 1989.

[AS1]

M. D. Atkinson and J.-R. Sack, Uniform generation of combinatorial objects in parallel,*J. Parallel Distributed Comput.* (1993), to appear.

[AS2]

M. D. Atkinson and J.-R. Sack. Generating binary trees at random,*Inform. Process. Lett.*,**41** (1992), 21–23.

[AS3]

M. D. Atkinson and J.-R. Sack, Uniform Generation of Forests of Restricted Height, Technical Report TR-230, School of Computer Science, Carleton University, 1993.

[C]

J. Culberson and G. Rawlins, Turtlegons: generating simple polygons from sequences of angles,*Proc. 1st ACM Symposium on Computational Geometry*, pp. 305–310, 1985.

[D]

L. Devroye, Private communication, McGill University, Novemeber, 1991.

[DE]

T. Doe and S. Edwards, Course Project: Random Generation of Polygons, Report 95.508, Carleton University, 1984.

[DES]

L. Devroye, P. Epstein, and J.-R. Sack, On generating random intervals and hyperrect-angles,*J. Comput. Graphical Statis.*,**2**(3) (1993), 291–307.

[Ed]

H. Edelsbrunner,*Algorithms in Combinatorial Geometry*, EATCS Monographs on Theoretical Computer Science, Vol. 10 (W. Brauer, G. Rozenberg, and A. Salomaa, eds.), Springer-Verlag, New York, 1987.

[Ep1]

P. Epstein, Polygon Shortest Path Algorithms and Applications, 4th year Honours Thesis, Carleton University, May 1990.

[Ep2]

P. Epstein, Generation of Random Geometric Objects, M.Sc. thesis, Carleton University, April 1992.

[ES]

P. Epstein and J.-R. Sack, Generating triangulations at random,*Proc. 4th Canadian Conference in Computational Geometry*, 1992, pp. 305–310.

[F1]

A. R. Forrest, Computational geometry and software engineering, towards a geometric computing environment, in*Techniques for Computer Graphics* (D. F. Rogers and R. A. Earnshaw, eds.), Springer-Verlag, New York, 1987, pp. 23–37.

[F2]

S. Fortune, A sweepline algorithm for Voronoi diagrams,*Algorithmica*,**2** (1987), 153–174.

[FM]

A. Fournier and D. Y. Montuno, Triangulating simple polygons and equivalent problems,*ACM Trans. Graphics*,**3** (1984), 153–174.

[Go]

A. Goldberg and D. Robson,*Smalltalk-80: The Language and Its Implementation*, Addison-Wesley, Reading, MA, 1983.

[GHL+]

L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan, Linear time algorithms for visibility and shortest path problems inside simple polygons,*Algorithmica*,**2**(2) (1987), 209–233.

[GJPT]

M. Garey, D. S. Johnson, F. P. Preparata, and R. E. Tarjan, Triangulating a simple polygon,*Inform. Process. Lett.*,**7**(4) (1978), 175–180.

[Gr]

R. L. Graham, An efficient algorithm for determining the convex hull of a finite planar set,*Inform. Process. Lett*,**1** (1972), 132–133.

[HM]

S. Huddieston and K. Mehlhorn, A new data structure for representing sorted lists,*Acta Inform.*,**17** (1982), 157–184.

[HMRT]

K. Hoffman, K. Mehlhorn, P. Rosenstiehl, and R. Tarjan Sorting Jordan sequences in linear time using level-linked search trees,*Inform, and Control*,**68** (1986), 170–184.

[J]

R. A. Jarvis, On the identification of the convex hull of a finite set of points in the plane,*Inform. Process. Lett.*,**2** (1973), 18–21.

[Ki]

D. G. Kirkpatrick, Optimal search in planar subdivisions,*SIAM J. Comput.*,**12**(1) (1983), 28–35.

[Kn]

A. Knight, A Computational Geometry Workbench and Its Use in Algorithms, M.Sc. thesis, Carleton University, May 1990.

[KS1]

A. Knight and J.-R. Sack, Generating and Sorting Jordan Sequences, Technical Report SCS-TR-188, School of Computer Science, Carleton University, 1991.

[KS2]

A. Knight and J.-R. Sack, Manuscript, Carleton University, 1991.

[L]

D. T. Lee, Visibility of a simple polygon,*Comput. Vision Graphics Image Process.*,**22**(2) (1983), 207–221.

[M]

A. A. Melkman, On-line construction of the convex hull of a simple polygon,*Inform. Process. Lett.*,**25** (1987), 11–12.

[MN]

K. Mehlhorn and S. Näher: LEDA, a Library of Efficient Data Types and Algorithms, Technical Report A 04/89, FB10, Universität des Saarlandes, Saarbrücken, 1989.

[OBW]

J. O'Rourke, H. Booth, and R. Washington, Connect-the-dots: a new heuristic,*Comput. Vision Graphics Image Process.*,**39**(2), (1987), 258–266.

[OV]

J. O'Rourke and M. Virmani, Generating Random Polygons, Smith Technical Report 11, August 1991.

[P]

F. P. Preparata, A new approach to planar point location,*SIAM J. Comput.*,**10**(3) (1981), 473–482.

[PS]

F. P. Preparata and M. I. Shamos*Computational Geometry: An Introduction*, Texts and Monographs in Computer Science (D. Gries, (ed.), Springer-Verlag, New York, 1985.

[Sa]

J.-R. Sack, Rectilinear Computational Geometry, Ph.D. thesis, McGill University, Montréal, 1984; Technical Report SCS-TR 54, School of Computer Science, Carleton University, 1984.

[Sc]

Peter Schorn, An object oriented workbench for experimental geometric computation,*Proc. 2nd Canadian Conference in Computational Geometry*, Ottawa, August 6–10, 1990, pp. 172–175.

[ST]

D. D. Sleator and R. E. Tarjan, Self-adjusting binary search trees,*J. Assoc. Comput. Mach*,**32** (1985), 652–686.

[Su]

S. Suri, Minimum Link Paths in Polygons and Related Problems, Ph.D. thesis, The Johns Hopkins University, 1987.

[TW]

R. E. Tarjan and C. J. van Wyk, An O(*n* log log n)-time algorithm for triangulating a simple polygon,*SIAM J. Comput.*,**17**(1) (1988), 143–178.

[W]

E. Welzl, Constructing the visibility graph of*n* line segmens in O(n^{2}) time,*Inform. Process. Lett.*,**20** (1985), 167–171.