Skip to main content
Log in

A non-Darcy model for recirculating flow through a fluid-sediment interface in a cylindrical container

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

A numerical investigation has been undertaken to characterize the axisymmetric laminar flow generated by a rotating disk inside a cylinder with an open top, containing a viscous fluid above as layer of fluid-saturated porous medium. The mathematical model is based on a continuum approach for both fluid and porous regions. Attention is focussed on conditions favouring steady, stable, axisymmetric solutions of the Darcy-Brinkman-Lapwood equation. The accuracy of the method is verified by solving some vortex flow problems in disk-cylinder geometries and comparing the results with: (a) existing numerical solutions and, (b) experimental pressure measurements in a similar geometry. Calculations are performed to investigate the fluid exchange between the porous region (porewater) and the overlying water. Results indicate that flow through composite (fluid-sediment) systems can be handled with good accuracy by the method presented here. With our approach the magnitude of advective porewater transport in sediments may be predicted. This finding is important for improved designs of flux chambers and also for understanding advective transport phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

B :

binary parameter (0 or 1)

Da:

Darcy number

K :

permeability of the porous medium

H :

Height

L :

reference length

p :

pressure

R :

radius

Re:

Reynolds number

t :

time

u :

radial velocity component

U :

reference velocity

v :

azimuthal velocity component

v :

seepage velocity

V :

intrinsic velocity

w :

axial velocity component

ɛ:

porosity (fluid volume/total volume)

ν:

azimuthal component of vorticity

μ:

dynamic viscosity

\(\tilde \mu \) :

effective viscosity

Ω:

angular velocity

ψ:

streamfunction

ϱ:

fluid density

d :

disk

i, j :

coordinates of the grid points inr−z plane

p :

porous medium

dp :

disk to porous medium

*:

non-dimensional parameters

References

  1. Alldrege, A. L., Gotschalk, C.: In situ settling behavior of marine snow. Limnol. Oceanogr.33, 339–351 (1988).

    Google Scholar 

  2. Jørgensen, B. B., Revsbech, N. P.: Diffusive boundary layers and the oxygen uptake of sediments detritus. Limnol. Oceanogr.30, 111–122 (1985).

    Google Scholar 

  3. Aller, R. C.: Experimental studies of changes produced by deposit feeders on pore water, sediment, and overlying water chemistry. Am. J. Sci.278, 1185–1234 (1978).

    Google Scholar 

  4. Savant, S. A., Reible, D. D., Thiboeaux, L. J.: Convective transport within stable river sediments. Water Resources Res.23, 1763–1768 (1987).

    Google Scholar 

  5. Berner, R. A.: Early diagenesis: A theoretical approach. Princeton 1980.

  6. Swartz, R. C., Lee, H.: Biological process affecting the distribution of pollutants in marine sediments. Part I. Accumulation, trophic transfer, biodegradation and migration. In: Contaminants and sediments, Vol. 2, Baker, R. A., Ed., pp. 5–45. Butterworth: Ann Arbor. 1980.

    Google Scholar 

  7. Svenson, U., Rahm, L.: Modelling the near-bottom region of the benthic boundary layer. J. Geophys. Res.93, 6906–6915 (1988).

    Google Scholar 

  8. Svenson, U., Rahm, L.: Towards a mathematical model of oxygen transfer to and within bottom sediments. J. Geophys. Res.96, 2777–2783 (1991).

    Google Scholar 

  9. Malan, D. E., McLachlan, A.: In situ benthic oxygen fluxes in a nearshore coastal marine system: a new approach to quantify the effect of wave action. Mar. Ecol. Prog. Ser.73, 69–81 (1991).

    Google Scholar 

  10. Tengberg, A., et al.: Benthic chamber and profiling landers in oceanography: A review of design, technical solutions and functionality. Prog. Oceanogr.35, 253–294 (1995).

    Google Scholar 

  11. Huettel, M., Gust, G.: Solute release mechanisms from confined sediment cores in stirred benthic chambers and flume flows. Mar. Ecol. Prog. Ser.82, 187–197 (1992).

    Google Scholar 

  12. Escudier, M. P.: Observations of the flow produced in a cylindrical container by a rotating endwall. Exp. Fluids2, 189–196 (1984).

    Google Scholar 

  13. Batchelor, G. K.: An introduction to fluid dynamics. London: Cambridge University Press, 1967.

    Google Scholar 

  14. Lapwood, E. R.: Convection of a fluid in a porous medium. Proc. Camb. Phil. Soc.44, 508–521 (1948).

    Google Scholar 

  15. Wooding, R. A.: Steady state free thermal convection of liquid in a saturated permeable medium. J. Fluid Mech.2, 273–285 (1957).

    Google Scholar 

  16. Nield, D. A., Bejan, A.: Convection in porous media. New York: Springer 1992.

    Google Scholar 

  17. Dullien, F. A. L.: Porous media: fluid transport and pore structure. New York: Academic Press (1979).

    Google Scholar 

  18. Scheidegger, A. E.: The physics of flow through porous media. Toronto: University of Toronto (1974).

    Google Scholar 

  19. Beavers, G. S., Joseph, D. D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech.30, 197–207 (1967).

    Google Scholar 

  20. Whitaker, S.: Flow in porous media: A theoretical derivation of Darcy's law. Trans. Porous Media1, 3–25 (1986).

    Google Scholar 

  21. Brinkman, H. C.: A calculation of the viscous force exerted by a flowing fluid on a dence swarm of particles. Appl. Sci. Res.A1, 27–34 (1947).

    Google Scholar 

  22. Brinkman, H. C.: On the permeability of media consisting of closely packed porous particles. Appl. Sci. Res.A1, 81–86 (1947).

    Google Scholar 

  23. Arakawa, A.: Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. Part I. J. Comput. Phys.1, 119–143 (1966).

    Google Scholar 

  24. Peyret, R., Taylor, T. O.: Computational methods for fluid flow. New York: Springer 1983.

    Google Scholar 

  25. Atkinson, K.: Elementary numerical analysis. New York: John Wiley & Sons 1985.

    Google Scholar 

  26. Lopez, J. M.: Axisymmetric vortex breakdown. Part 1, Confined swirling flow. J. Fluid. Mech.221, 533–552 (1990).

    Google Scholar 

  27. Khalili, A., Adabala, R. R., Rath, H. J.: Flow induced by an asymmetrically placed disk rotating coaxially inside a cylindrical casing. Acta Mech.113, 9–19 (1995).

    Google Scholar 

  28. Glud, N. G., Gundersen, J. K., Revsbech, N. P., Jørgensen, B. B., Huettel, M.: Calibration and performance of the stirred flux chamber from the benthic lander ELINOR. Deap-Sea Res.42, 1029–1042 (1995).

    Google Scholar 

  29. Glud, N. G., Forster, S., Huettel, M.: Influence of radial pressure gradients on solute exchange in stirred benthic chambers Mar. Ecol. Prog. Ser.141, 303–311 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khalili, A., Basu, A.J. & Huettel, M. A non-Darcy model for recirculating flow through a fluid-sediment interface in a cylindrical container. Acta Mechanica 123, 75–87 (1997). https://doi.org/10.1007/BF01178402

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01178402

Keywords

Navigation