manuscripta mathematica

, Volume 52, Issue 1, pp 63–80

Höhere Sekantenvarietäten und Vektorbündel auf Kurven


  • Herbert Lange
    • Mathematisches InstitutUniversität Erlangen-Nürnberg

DOI: 10.1007/BF01171486

Cite this article as:
Lange, H. Manuscripta Math (1985) 52: 63. doi:10.1007/BF01171486


If E denotes a vector bundle of rank 2 an a smooth projective curve X, an upper bound for the number m(E) of sublinebundles of maximal degree of E is given in terms of the genus of X and the invariant s(E). The proof is an application of an enumerative result for higher secant varieties of curves in projective space.

Copyright information

© Springer-Verlag 1985