, Volume 55, Issue 1-3, pp 203-215

Trace element chemistry of lithium-rich micas from rare-element granitic pegmatites

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Summary

Granitic pegmatites characterized by advanced accumulation and fractionation of incompatible rare lithophile elements (Li, Rb, Cs, Be, Ta ≶ Nb, B, P and F), often contain mineral assemblages which host lithium-rich micas. Lepidolite and lithian muscovite occur in high-pressure spodumene, low-pressure petalite, phosphorus-enriched amblygonite and fluorine-rich lepidolite subtypes of orogenic affiliated complex type granitic pegmatites and rarely in anorogenic affiliated amazonite-bearing

Trace element data determined by X-ray fluorescence for lepidolite of various pegmatite subtypes, morphology (“book”, “scaly”, “fine-grained”), position within the pegmatite (primary zones, replacement units, pockets), mineral assemblages and tectonic affinity (orogenic vs anorogenic) show extreme fractionation of Rb and Cs; modest levels of T1, Ga, Nb, Ta, Sn and Zn; and typically low abundances of Ba, Sr, Ni, Pb, Y, V, W and Zr. Extreme fractionation is indicated by low values of K/Rb, K/Cs and Nb/Ta which are lowest in lepidolite from petalite subtype pegmatites.

No systematic differences in trace element content is evident among the different lepidolite morphologies or paragenetic position. Lepidolite from spodumene subtype pegmatites are generally slightly less fractionated than those from petalite or lepidolite subtype pegmatites.

Zusammenfassung

Granitische Pegmatite, die durch fortgeschrittene Anreicherung und Fraktionierung von inkompatiblen, seltenen, lithophilen Elementen (Li, Rb, Cs, Be, Ta Nb, B, P und F) charakterisiert sind, enthalten häufig Mineralparagenesen mit Lithium-reichen Glimmern. Lepidolith und Li-Muskowit treten in Hochdruck-Spodumen, in Niedrigdruck-Petalit, in mit Phosphor angereichertem Amblygonit und in Fluor-reichen Lepidolith-Unterarten aus komplexen orogenen granitischen Pegmatiten und selten auch aus anorogenen, Amazonit-führenden Pegmatiten, auf.

Spurenelement-Daten aus der Röntgenfluoreszenzanalyse von Lepidolith aus verschiedenen Pegmatit-Untertypen, die Morphologie (tafelig, schuppig, feinkörnig), die Position innerhalb des Pegmatits (primäre Zonen, verdrängte Einheiten, Taschen), Mineralbestände und tektonische Affinität (orogen gegen anorogen) zeigen eine extreme Fraktionierung von Rb und Cs, bescheidene Gehalte an TI, Ga, Nb, Ta, Sn und Zn; und typischerweise geringe Häufigkeiten von Ba, Sr, Ni, Pb, Y, V, W und Zr. Die extreme Fraktionierung wird durch niedrige Werte von K/Rb, K/Cs und Nb/Ta angezeigt, die in Lepidolith von Pegmatiten des Petalit-Subtyps am niedrigsten sind.

Aus den verschiedenen Morphologien oder paragenetischen Positionen von Lepidolith sind keine systematischen Unterschiede im Spurenelementgehalt ersichtlich. Lepidolith aus Pegmatiten des Spodumen-Subtyps sind generell etwas weniger fraktioniert als jene von Pegmatiten des Petalit- oder Lepidolith-Subtyps.

With 4 Figures