[1]

D. Anick, D. Mitra and M.M. Sondhi, Stochastic theory of a data-handling system with multiple sources, Bell Sys. Tech. J. 61 (1982) 1871–1894.

[2]

A. Berger, Overload control using rate control throttle: selecting token bank capacity for robustness to arrival rates, IEEE Trans. Aut. Cont. AC-36 (1991) 216–219.

[3]

A. Berger, Performance analysis of a rate-control throttle where tokens and jobs queue, IEEE J. Sel. Areas Commun. SAC-9 (1991) 165–170.

[4]

M.C. Chuah and R.L. Cruz, Approximate analysis of (*σ, ρ*) regulators,*Proc. INFOCOM'90* (IEEE Computer Society Press) pp. 874–880.

[5]

C. Chamzas and D.L. Duttweiler, Encoding facsimile images for packet-switched networks, IEEE J. Sel. Areas Commun. SAC-7 (1989) 857–864.

[6]

E.G. Coffman, Jr., B.M. Igelnik and Y.A. Kogan, Controlled stochastic model of a communication system with multiple sources, to appear in IEEE Trans. Info. Theory.

[7]

J.-P. Coudreuse, G. Pays and M. Trouvat, Asynchronous transfer mode, Commutation and Transmission, no. 3 (1990) pp. 5–16.

[8]

J.N. Daigle and J.D. Langford, Models for analysis of packet voice communication systems, IEEE J. Sel. Areas Commun. SAC-4 (1986) 847–855.

[9]

L. Dittman and S.B. Jacobsen, Statistical multiplexing of identical bursty sources in an ATM network,*GLOBECOM'88*, pp. 1293–1297.

[10]

E.A. van Doorn and G.J.K. Regterschot, Conditional PASTA, Oper. Res. Lett. 6 (1988) 229–232.

[11]

E.A. van Doorn, A.A. Jagers and J.S.J. de Wit, A fluid reservoir regulated by a birth-death process, Comm. Statist. Stochastic Models 4 (1988) 457–472.

[12]

A.E. Eckberg, D.T. Luan and D.M. Lucantoni, Bandwidth management: a congestion control strategy for broadband packet networks — characterizing the throughput-burstiness filter, Proc. ITC Specialist Seminar, Adelaide (1989) paper no. 4.4.

[13]

A.E. Eckberg, D.T. Luan and D.M. Lucantoni, An approach to controlling congestion in ATM networks, Int. J. Digital and Analog Commun. Sys. 3 (1990) 199–209.

[14]

A.I. Elwalid and D. Mitra, Analysis and design of rate-based congestion control of high speed networks, II: statistical multiplexing, in preparation.

[15]

A.I. Elwalid, D. Mitra and T.E. Stern, Statistical multiplexing of Markov modulated sources: theory and computational algorithms,*Proc. ITC-13*, Copenhagen (June 1991) pp. 495–500.

[16]

D.P. Gaver and J.P. Lehoczky, Channels that cooperatively service a data stream and voice messages, IEEE Trans. Commun. COM-30 (1982) 1153–1162.

[17]

R.A. Howard,*Dynamic Probabilistic Systems*, vol 1: Markov Models (Wiley, New York, 1971).

[18]

J. Keilson,*Markov Chain Models-Rarity and Exponentiality* (Springer, New York, 1979).

[19]

F. Kishino, K. Manabe, Y. Hayashi and H. Yasudo, Variable bit-rate coding of video signals for ATM networks, IEEE J. Sel. Areas Commun. SAC-7 (1989) 801–806.

[20]

H. Kobayashi, Performance issues of Broadband ISDN,*Proc. Int. Conf. on Computer Communication ICCC 90*, New Delhi, pp. 349–361.

[21]

L. Kosten, Stochastic theory of data-handling systems with groups of multiple sources, in:*Performance of Computer-Communication Systems*, eds. H. Rudin and W. Bux (Eisevier, Amsterdam, 1984) pp. 321–331.

[22]

L. Kosten, Liquid models for a type of information buffer problems, Delft Progress Report 11 (1986) pp. 71–86.

[23]

H. Kroner, T.H. Theimer and U. Briem, Queueing models for ATM systems — a comparison,*Proc. 7th ITC Specialist Seminar*, Morristown (1990) paper 9.1.

[24]

P.J. Kuehn, Approximate analysis of general queueing networks by decomposition, IEEE Trans. Commun. COM-27 (1979) 113–126.

[25]

S.-Q. Li, Study of information loss in packet voice systems, IEEE Trans. Commun. COM-37 (1989) 1192–1202.

[26]

B. Maglaris, P. Anastassiou, P. Sen, G. Karlsson and J.D. Robbins, Performance models of statistical multiplexing in packet video communications, IEEE Trans. Commun. COM-36 (1988) 834–843.

[27]

D. Mitra, Stochastic theory of a fluid model of producers and consumers coupled by a buffer, Adv. Appl. Prob. 20 (1988) 646–76.

[28]

D. Mitra and I. Mitrani, Analysis of a Kanban discipline for cell coordination in production lines, I, Manag. Sci. 36 (1990) 1548–1566.

[29]

D. Mitra, I. Mitrani, K.G. Ramakrishnan, J.B. Seery and A. Weiss, A unified set of proposals for control and design of high speed data networks, this issue.

[30]

J.A.S. Monteiro, M. Gerla and L. Fratta, Leaky bucket input rate control in ATM networks,*Proc. Int. Conf. Computer Communication, ICCC 90*, New Delhi, pp. 370–376.

[31]

R. Nagarajan, J.F. Kurose and D. Towsley, Approximation techniques for computing loss in finite-buffered voice multiplexers, IEEE J. Sel. Areas Commun. SAC-9 (1991) 368–377.

[32]

M.F. Neuts,*Matrix Geometric Solutions in Stochastic Models* (John Hopkins University Press, Baltimore, 1981).

[33]

I. Norros, J.W. Roberts, A. Simonian and J.T. Virtamo, The superposition of variable bit rate sources in an ATM multiplexer, IEEE J. Sel. Areas Commun. SAC-9 (1991) 378–387.

[34]

D.W. Petr, L.A. DaSilva and V.S. Frost, Priority discarding of speech in integrated packet networks, IEEE J. Sel. Areas Commun. SAC-7 (1989) 644–656.

[35]

M. Sidi, W.Z. Liu, I. Cidon and I. Gopal, Congestion control through input rate regulation,*Proc. GLOBECOM'89*, Dallas, pp. 1764–1768.

[36]

T.E. Stern and A.I. Elwalid, Analysis of a separable Markov-modulated rate models for information-handling systems, Adv. Appl. Prob. 23 (1991) 105–139.

[37]

R.C.F. Tucker, Accurate method for analysis of a packet-speech multiplexer with limited delay, IEEE Trans. Commun. COM-36 (1988) 479–483.

[38]

J.S. Turner, New directions in communications (or which way to the information age?), IEEE Commun. Magazine (Oct. 1986).

[39]

A. Weiss, A new technique for analyzing large traffic systems, Adv. Appl. Prob. 18 (1986) 506–532

[40]

W. Whitt, The queueing network analyzer, Bell Sys. Tech. J. 62 (1983) 2779–2816.

[41]

G. Woodruff, R. Kositpaiboom, G. Fitzpatrick and P. Richards, Control of ATM statistical multiplexing performance,*Proc. ITC Specialists Seminar*, Adelaide (1989) paper 17.2.