manuscripta mathematica

, Volume 45, Issue 3, pp 249–272

Springer forms and the first Tits construction of exceptional Jordan division algebras

  • Holger P. Petersson
  • Michel L. Racine

DOI: 10.1007/BF01158039

Cite this article as:
Petersson, H.P. & Racine, M.L. Manuscripta Math (1984) 45: 249. doi:10.1007/BF01158039


In this paper, a certain quadratic form, originally due to Springer [15], which may be associated with any separable cubic subfield living inside an exceptional simple Jordan algebra is related to the coordinate algebra of an appropriate scalar extension. We use this relation to show that, in the presence of the third roots of unity, exceptional Jordan division algebras arising from the first Tits construction are precisely those where reducing fields and splitting fields agree, and that all isotopes of a first construction exceptional division algebra are isomorphic.

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Holger P. Petersson
    • 1
  • Michel L. Racine
    • 2
  1. 1.Fachbereich Mathematik und Informatik FernUniversitätHagenBundesrepublik Deutschland
  2. 2.Department of MathematicsUniversity of OttawaOttawaCanada