Queueing Systems

, Volume 21, Issue 3, pp 337–389

The achievable region method in the optimal control of queueing systems; formulations, bounds and policies

  • Dimitris Bertsimas
Article

DOI: 10.1007/BF01149167

Cite this article as:
Bertsimas, D. Queueing Syst (1995) 21: 337. doi:10.1007/BF01149167

Abstract

We survey a new approach that the author and his co-workers have developed to formulate stochastic control problems (predominantly queueing systems) asmathematical programming problems. The central idea is to characterize the region of achievable performance in a stochastic control problem, i.e., find linear or nonlinear constraints on the performance vectors that all policies satisfy. We present linear and nonlinear relaxations of the performance space for the following problems: Indexable systems (multiclass single station queues and multiarmed bandit problems), restless bandit problems, polling systems, multiclass queueing and loss networks. These relaxations lead to bounds on the performance of an optimal policy. Using information from the relaxations we construct heuristic nearly optimal policies. The theme in the paper is the thesis that better formulations lead to deeper understanding and better solution methods. Overall the proposed approach for stochastic control problems parallels efforts of the mathematical programming community in the last twenty years to develop sharper formulations (polyhedral combinatorics and more recently nonlinear relaxations) and leads to new insights ranging from a complete characterization and new algorithms for indexable systems to tight lower bounds and nearly optimal algorithms for restless bandit problems, polling systems, multiclass queueing and loss networks.

Keywords

Queueing networksloss networksmultiarmed banditsboundspoliciesoptimization

Copyright information

© J.C. Baltzer AG, Science Publishers 1995

Authors and Affiliations

  • Dimitris Bertsimas
    • 1
  1. 1.Sloan School of Management and Operations Research CenterMassachusetts Institute of TechnologyCambridgeUSA