, Volume 12, Issue 2, pp 243-275

Glial membrane specializations and the compartmentalization of the lamina ganglionaris of the housefly compound eye

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Summary

Membrane specializations in the lamina ganglionaris of the housefly are investigated using conventional thin-section EM, freeze-fracture replication and the diffusion of colloidal lanthanum. All glial cells in the lamina are coupled by gap junctions. Desmosomes also link all glia except the epithelial glia. Extensive glia-glial and glia-neuronal septate junctions are present in the pseudocartridge zone and nuclear layer. Septate junctions in the nuclear layer intermingle with bands of interglial and glia-neuronal tight junctions. Tight junctions are also found between satellite and epithelial glia at the border of the nuclear and plexiform layers, between adjacent epithelial glial cells in the plexiform layer, between epithelial and marginal glia at the proximal boundary of the optic neuropil, between marginal glial cells, and between marginal glia and axons. Colloidal lanthanum, introduced through an incision in the cornea, penetrates the retina but is occluded from the neuropil by septate junctions in the pseudocartridge zone. The disposition of tight and septate junctions is described in relation to the compartmentalization of the lamina. Two major compartments are delineated. The first represents the nuclear layer and contains the cell bodies of second-order visual neurons (monopolar neurons). The second compartment constitutes the plexiform layer of the lamina. Within the plexiform layer, each optic cartridge is partitioned into a separate subcompartment. Also, tracheoles and axons of long visual fibres are isolated from the optic cartridges by glial tight junctions. Morphological evidence for compartmentalization is correlated with previously established electrical properties of the insect lamina ganglionaris.