, Volume 21, Issue 2, pp 692-704

A fractographic study of hydrogen-assisted cracking and liquid-metal embrittlement in nickel

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Metallographic and fractographic studies of crack growth in nickel polycrystals and single crystals in a number of environments are described. “Brittle” intercrystalline and transcrystalline cleavage-like fractures were observed for specimens tested in liquid mercury, liquid lithium, liquid sodium, gaseous hydrogen, and for hydrogen-charged specimens tested in air. “Brittle” fractures were associated with considerable slip, and dimples/tear ridges were observed on fracture surfaces, suggesting that crack growth occurred by localized plastic flow. There were remarkable similarities between adsorption-induced liquid-metal embrittlement and hydrogen-assisted cracking which, along with other observations, suggested that adsorbed hydrogen at crack tips was responsible for hydrogen-assisted cracking. It is concluded that adsorbed atoms weaken interatomic bonds at crack tips thereby facilitating the nucleation of dislocations and promoting crack growth by localized plastic flow.