Theoretica chimica acta

, Volume 90, Issue 2, pp 189–203

Theoretical study of the first transition row oxides and sulfides

  • Charles W. BauschlicherJr.
  • Phillippe Maitre

DOI: 10.1007/BF01113847

Cite this article as:
Bauschlicher, C.W. & Maitre, P. Theoret. Chim. Acta (1995) 90: 189. doi:10.1007/BF01113847


The first transition row oxides and sulfides are studied using several different levels of theory. The calculations show the bonding mechanism in the sulfides and oxides to be very similar. For the oxides, accurate experimental data allow the theoretical methods to be calibrated. The same level of theory is used to study the sulfides where there is far less experimental information. For ScO through MnO and CuO the coupled cluster singles and doubles technique including a perturbational estimate of the connected triple excitations [CCSD(T)] yields spectroscopic constants (γe, ωe, andD0) in good agreement with experiment. The triple excitations are found to be very important in achieving this accuracy. For FeO to NiO, the self-consistent-field (SCF) approach yields π orbitals that are localized on the metal or oxygen. This appears to cause problems for the single reference techniques; this is discussed in detail for NiO. The complete-active-space SCF/internally contracted averaged coupled pair functional approach (CASSCF/ICACPF) works well for FeO to NiO. The calculation of accurate dipole moments is found to be very difficult.

Key words

Transition metal oxidesTransition metal sulfides

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Charles W. BauschlicherJr.
    • 1
  • Phillippe Maitre
    • 1
  1. 1.NASA Ames Research CenterMoffett FieldUSA
  2. 2.Department of ChemistryUniversity of CaliforniaSanta BarbaraUSA