Factorization of solvable polynomials over finite fields and the generalized Riemann hypothesis Article DOI :
10.1007/BF01104107

Cite this article as: Evdokimov, S.A. J Math Sci (1992) 59: 842. doi:10.1007/BF01104107
Abstract This article presents an algorithm that, assuming the generalized Riemann hypothesis, factors a polynomial f mod p, where f ∃Z [X] is solvable overQ , into irreducible (over the fieldF _{p} m) factors in time polynomial in m, log p, and the length of notation of f. The following problems are also solved in time polynomial in m, n, and log p: 1) construction of the fieldF _{p} m, 2) construction of all isomorphisms between two realizations ofF _{p} ^{m} , and 3) computation of the roots of degree n inF _{p} _{m} .

Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Mathematicheskogo Instituta im. V. A. Steklova Akademii Nauk SSSR, Vol. 176, pp. 104–117, 1989.

Literature cited 1.

M.-D. A. Huang, “Riemann hypothesis and finding roots over finite fields,” in: Proc. Seventeenth ACM Symp. on Theory of Computing, New York (1985), pp. 121–130.

2.

S. Landau and G. Miller, “Solvability by radicals is in polynomial time,” in: Proc. Fifteenth ACM Symp. on Theory of Computing, New York (1983), pp. 140–151.

3.

S. Lang, Algebra, Addison-Wesley, Reading (1965).

Google Scholar 4.

S. Lang, Algebraic Number Theory, Addison-Wesley, Reading (1970).

Google Scholar 5.

Z. I. Borevich and I. R. Shafarevich, Number Theory [in Russian], Moscow (1964).

6.

J. C. Lagarias, H. L. Montgomery, and A. M. Odlyzko, “A bound for the least prime ideal in the Chebotarev density theorem,” Inv. Math.,

54 , 271–296 (1979).

Google Scholar 7.

I. M. Vinogradov, Fundamentals of Number Theory [in Russian], Moscow (1972).

8.

E. R. Berlekamp, “Factoring polynomials over finite fields,” Bell Sysem Tech. J.,

48 , 1853–1859 (1967).

Google Scholar 9.

A. K. Lenstra, H. W. Lenstra, and L. Lovasz, “Factoring polynomials with rational coefficients,” Math. Ann.,

261 , 515–535 (1982).

Google Scholar 10.

A. L. Chistov, “Polynomial complexity algorithm for factoring polynomials and finding components of varieties in subexponential time,” Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Akad. Nauk SSSR,

137 , 124–188 (1984).

Google Scholar 11.

L. Ronyai, “Factoring polynomials over finite fields,” in: Proc. Twenty Eighth IEEE Found. Comput. Sci., New York (1987).

12.

S. A. Evdokimov, “The generalized Riemann hypothesis and factorization of solvable polynomials over finite fields,” in: Abstracts of the Eighth All-Union Conf. on Math. Logic [in Russian] (1986), p. 64.

© Plenum Publishing Corporation 1992

Authors and Affiliations There are no affiliations available