1.

M.-D. A. Huang, “Riemann hypothesis and finding roots over finite fields,” in: Proc. Seventeenth ACM Symp. on Theory of Computing, New York (1985), pp. 121–130.

2.

S. Landau and G. Miller, “Solvability by radicals is in polynomial time,” in: Proc. Fifteenth ACM Symp. on Theory of Computing, New York (1983), pp. 140–151.

3.

S. Lang, Algebra, Addison-Wesley, Reading (1965).

4.

S. Lang, Algebraic Number Theory, Addison-Wesley, Reading (1970).

5.

Z. I. Borevich and I. R. Shafarevich, Number Theory [in Russian], Moscow (1964).

6.

J. C. Lagarias, H. L. Montgomery, and A. M. Odlyzko, “A bound for the least prime ideal in the Chebotarev density theorem,” Inv. Math.,**54**, 271–296 (1979).

7.

I. M. Vinogradov, Fundamentals of Number Theory [in Russian], Moscow (1972).

8.

E. R. Berlekamp, “Factoring polynomials over finite fields,” Bell Sysem Tech. J.,**48**, 1853–1859 (1967).

9.

A. K. Lenstra, H. W. Lenstra, and L. Lovasz, “Factoring polynomials with rational coefficients,” Math. Ann.,**261**, 515–535 (1982).

10.

A. L. Chistov, “Polynomial complexity algorithm for factoring polynomials and finding components of varieties in subexponential time,” Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Akad. Nauk SSSR,**137**, 124–188 (1984).

11.

L. Ronyai, “Factoring polynomials over finite fields,” in: Proc. Twenty Eighth IEEE Found. Comput. Sci., New York (1987).

12.

S. A. Evdokimov, “The generalized Riemann hypothesis and factorization of solvable polynomials over finite fields,” in: Abstracts of the Eighth All-Union Conf. on Math. Logic [in Russian] (1986), p. 64.