1.

Al-Khayyal, F. A. and J. E. Falk (1983), Jointly Constrained Biconvex Programming,*Math, of Oper. Res.*
**8**, 273–286.

2.

Al-Khayyal, F. A. and C. Larson (1990), Global Minimization of a Quadratic Function Subject to a Bounded Mixed Integer Constraint Set,*Annals of Operations Research*
**25**, 169–180.

3.

Balas, E. (1975), Nonconvex Quadratic Programming via Generalized Polars,*SIAM Journal on Applied Math.*
**28**, 335–349.

4.

Benacer, R. and PhamDinh, Tao (1986), Global Maximization of a Nondefinite Quadratic Function over a Convex Polyhedron, pp. 65–76, in*Fermat Days 85: Mathematics for Optimization*, J. B. Hiriart-Urruty (ed.), North-Holland, Amsterdam.

5.

Bomze, I. M. (1992), Copositivity Conditions for Global Optimality Indefinite Quadratic Programming Problems,*Czechoslovak Journal for Operations Research*
**1**, 1–19.

6.

Fisher, M. L. (1981), The Lagrangian Relaxation Methods for Solving Integer Programming Problems,*Management Science*
**27**, 1–18.

7.

Floudas, C. A. and P. M. Parsalos (1990),*A Collection of Test Problems for Constrained Global Optimization Algorithms*, Springer-Verlag, Berlin.

8.

Floudas, C. A. and V. Visweswaran (1990), A Global Optimization Algorithm (GOP) for Certain Classes of Nonconvex NLP's-1. Theory,*Computers and Chemical Engineering*
**14**, 1419.

9.

Floudas, C. A. and V. Visweswaran (1993), A Primal-Relaxed Dual Global Optimization Approach: Theory,*JOTA*
**78**, 187–225.

10.

Golub, G. H. and C. F. Van Loan (1989),*Matrix Computations*, Second Edition, The Johns Hopkins University Press, Baltimore.

11.

Guignard, M. and S. Kim (1987), Lagrangian Decomposition: A Model Yielding Stronger Lagrangian Bounds,*Mathematical Programming*
**39**, 215–228.

12.

Hansen, P., B. Jaumard, and S. Lu (1991), An Analytical Approach to Global Optimization,*Math. Programming*
**52**, 227–254.

13.

Kough, P. F., The Indefinite Quadratic Programming Problem,*Operations Research*
**27(3)**, 516–533.

14.

Larsson, T. and Z. Liu (1989), A Primal Convergence Result for Dual Subgradient Optimization with Applications to Multicommunity Network Flows, Research Report, Department of Mathematics, Linkoping Institute of Technology, S-581 83, Linkoping, Sweden.

15.

Manas, M. (1968), An Algorithm for a Nonconvex Programming Problem,*Econ Math Obzor Acad. Nad. Ceskoslov*
**4**(**2**), 202–212.

16.

Meyer, G. G. (1988), Convergence of Relaxation Algorithms by Averaging,*Mathematical Programming*
**40**, 205–212.

17.

Mueller, R. K. (1970), A Method for Solving the Indefinite Quadratic Programming Problem,*Management Science*
**16**(**5**), 333–339.

18.

Murtagh, B. A. and M. A. Saunders (1987), MINOS 5.1 User's Guide, Technical Report Sol 83-20R, Systems Optimization Laboratory, Department of Operations Research, Stanford University, Stanford, California.

19.

Muu, L. D. and W. Oettli (1991), An Algorithm for Indefinite Quadratic Programming with Convex Constraints,*Operations Research Letters*
**10**, 323–327.

20.

Pardalos, P. M. (1991), Global Optimization Algorithms for Linearly Constrained Indefinite Quadratic Programs,*Computers Math. Applic.*
**21**, 87–97.

21.

Pardalos, P. M., J. H. Glick, and J. B., Rosen (1987), Global Minimization of Indefinite Quadratic Problems,*Computing*
**39**, 281–291.

22.

Pardalos, P. M. and J. B. Rosen (1987),*Constrained Global Optimization: Algorithms and Applications*, Springer-Verlag, Berlin.

23.

Pardalos, P. M. and S. A. Vavasis (1991), Quadratic Programming with One Negative Eigenvalue Is NP-Hard,*Journal of Global Optimization*
**1**, 15–22.

24.

Phillips, A. T. and J. B. Rosen (1990), Guaranteed*ɛ*-Approximate Solution for Indefinite Quadratic Global Minimization,*Naval Research Logistics*
**37**, 499–514.

25.

Ritter, K. (1966), A Method for Solving Maximum Problems with a Nonconcave Quadratic Objective Function,*Z. Wahrscheinlichkeitstheorie*,**4**, 340–351.

26.

Sherali, H. D. and A. R. Alameddine (1992), A New Reformulation-Linearization Technique for Bilinear Programming Problems,*Journal of Global Optimization*
**2**(**3**), 379–410.

27.

Sherali, H. D. and D. C. Myers (1985/6), The Design of Branch and Bound Algorithms for a Class of Nonlinear Integer Programs,*Annals of Oper. Res.*
**5**, 463–484.

28.

Sherali, H. D. and C. H. Tuncbilek (1992), A Global Optimization Algorithm for Polynomial Programming Problems Using a Reformulation-Linearization Technique,*The Journal of Global Optimization*
**2**, 101–112.

29.

Sherali, H. D. and O. Ulular (1989), A Primal-Dual Conjugate Subgradient Algorithm for Specially Structured Linear and Convex Programming Problems,*Appl. Math. Optim.*
**20**, 193–221.

30.

Tuncbilek, C. H. (1994),*Polynomial and Indefinite Quadratic Programming Problems: Algorithms and Applications*, PhD Dissertation, Industrial and Systems Engineering, Virginia Polytechnic Institute and State University.

31.

Tuy, H. (1987), Global Minimization of a Difference of Two Convex Functions,*Mathematical Programming Study*
**30**, 150–182.

32.

Vavasis, S. A. (1992), Approximation Algorithms for Indefinite Quadratic Programming,*Mathematical Programming*
**57**, 279–311.

33.

Visweswaran, V. and C. A. Floudas, (1993), New Properties and Computational Improvement of the GOP Algorithm for Problems with Quadratic Objective Function and Constraints,*Journal of Global Optimization*
**3**, 439–462.

34.

Zwart, P. B. (1973), Nonlinear Programming: Counterexamples to Two Global Optimization Algorithms,*Operations Research*
**21**(**6**), 1260–1266.