Journal of Soviet Mathematics

, Volume 61, Issue 2, pp 2046–2056

Invariant subspaces of the operator of multiplication by z in the space Ep in a multiply connected domain

  • D. V. Yakubovich
Article

DOI: 10.1007/BF01095669

Cite this article as:
Yakubovich, D.V. J Math Sci (1992) 61: 2046. doi:10.1007/BF01095669

Abstract

In the paper one obtains the description of invariant subspaces of the multiplication operator
in the Hardy-Smirnov space Ep (G), where G is afinitely connected domain with a piecewise C2-smooth boundary. For the case of an analytic “interior boundary” Γint of the domain G and p=2, a more precise description is given, generalizing the Hitt—Sarason result on the invariant subspaces of the space H2 in a circular annulus.

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • D. V. Yakubovich

There are no affiliations available