, Volume 26, Issue 2-3, pp 199-212

Tree-ring reconstructed rainfall over the southeastern U.S.A. during the medieval warm period and little ice age

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


A 1053-year reconstruction of spring rainfall (March-June) was developed for the southeastern United States, based on three tree-ring reconstructions of statewide rainfall from North Carolina, South Carolina, and Georgia. This regional reconstruction is highly correlated with the instrumental record of spring rainfall (r = +0.80; 1887–1982), and accurately reproduces the decade-scale departures in spring rainfall amount and variance witnessed over the Southeast during the past century. No large-magnitude centuries-long trends in spring rainfall amounts were reconstructed over the past 1053 years, but large changes in the interannual variability of spring rainfall were reconstructed during portions of the Medieval Warm Period (MWP), Little Ice Age (LIA), and the 20th century. Dry conditions persisted at the end of the 12th century, but appear to have been exceeded by a reconstructed drought in the mid-18th century. High interannual variability, including five extremely wet years were reconstructed for a 20-yr period during the late 16th and early 17th centuries, and may reflect amplified atmospheric circulation over eastern North America during what appears to have been one of the most widespread cold episodes of the Little Ice Age.