, Volume 29, Issue 3, pp 333-352

Long-term changes of the surface air temperature in relation to solar inertial motion

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The inertial motion of the Sun around the barycentre, or centre of mass, of the Solar System has been employed as the base in searching for possible influence of the Solar System as a whole on climatic processes, especially on the changes in surface air temperature. A basic cycle of about 180–200 years and its higher harmonics up to 30 years have been found in surface air temperature of central Europe since 1753, established from 13 continuous instrumental time series. These periods correspond to the periods of solar inertial motion. In the first half of the 19th century, when the solar motion was chaotic, this temperature was about 0.75°C lower than that in the 20th (1940–50) and the 18th (1760–70) centuries. The mentioned decades of long-term temperature maxima coincide with the central decades of the ordered (trefoil) motion of the Sun. The temperatures in coastal Europe have been found to have slightly different properties, especially on a long-time scale. The periods of 35–45 years are significantly pronounced in the coastal Europe temperature spectrum. The chaotic motion of the Sun in the next decades could decrease both the solar forcing and global surface air temperature.

This research was performed with support of the Grant Agency of the Czech Republic, Grant No. 205/93/0417, I. Charvátová: ‘Prognosis of climate development in central Europe’.