Skip to main content
Log in

Detection of methane in air using diode-laser pumped difference-frequency generation near 3.2 μm

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Spectroscopic detection of the methane in natural air using an 800 nm diode laser and a diode-pumped 1064 nm Nd:YAG laser to produce tunable light near 3.2 µm is reported. The lasers were pump sources for ring-cavity-enhanced tunable difference-frequency mixing in AgGaS2. IR frequency tuning between 3076 and 3183 cm−1 was performed by crystal rotation and tuning of the extended-cavity diode laser. Feedback stabilization of the IR power reduced intensity noise below the detector noise level. Direct absorption and wavelength-modulation (2f) spectroscopy of the methane in natural air at 10.7 kPa (80 torr) were performed in a 1 m single-pass cell with 1 µW probe power. Methane has also been detected using a 3.2 µm confocal build-up cavity in conjunction with an intracavity absorption cell. The best methane detection limit observed was 12 ppb m (Hz.)−1/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Lucchesini, I. Longo, C. Gabbanini, S. Gozzini, L. Moi: Appl. Opt.32, 5211 (1993)

    Google Scholar 

  2. J.C. Scott, R.A. Maddever, A.T. Paton: Appl. Opt.31, 815 (1992)

    Google Scholar 

  3. K. Uehara, H. Tai: Appl. Opt.31, 809 (1992)

    Google Scholar 

  4. F.S. Pavone, M. Inguscio: Appl. Phys. B56, 118 (1993)

    Google Scholar 

  5. GEISA database, Laboratoire de Meteorologie Dynamique DU C.N.R.S., Ecole Polytechnique, F-91128 Palaiseau Cedex, France

  6. E. Bachem, A. Dax, T. Fink, A. Weidenfeller, M. Schneider, W. Urban: Appl. Phys. B57, 185 (1993)

    Google Scholar 

  7. C.B. Moore: Appl. Opt.4, 252 (1965)

    Google Scholar 

  8. A.S. Pine: J. Opt. Soc. Am.66, 97 (1976)

    Google Scholar 

  9. J.B. McManus, C.E. Kolb, P.L. Kebabian: Appl. Opt.28, 5016 (1989)

    Google Scholar 

  10. C.R. Webster, R.D. May, C. A. Trimble, R. G. Chave, J. Kendall: Appl. Opt.33, 454 (1994)

    Google Scholar 

  11. H.K. Choi, G.W. Turner, Z.L. Liau: Appl. Phys. Lett.65, 2251 (1994)

    Google Scholar 

  12. A.N. Baranov, A.N. Imenkov, V.V. Sherstnev, Yu. P. Yakovlev: Appl. Phys. Lett.64, 2480 (1994)

    Google Scholar 

  13. J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho: Science246, 553 (April 1994)

    Google Scholar 

  14. U. Simon, C.E. Miller, C.C. Bradley, R.G. Hulet, R.F. Curl, F.K. Tittel: Opt. Lett.18, 1062 (1993)

    Google Scholar 

  15. U. Simon, F.K. Tittel, L. Goldberg: Opt. Lett.18, 1931 (1993)

    Google Scholar 

  16. U. Simon, S. Waltman, I. Loa, L. Hollberg, F. Tittel: J. Opt. Soc. Am. B12, 323 (1995)

    Google Scholar 

  17. Tran-Ba-Chu, M. Broyer: J. Phys. (Paris)46, 523 (1985)

    Google Scholar 

  18. G.D. Boyd, D.A. Kleinman: J. Appl. Phys.39, 3597 (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrov, K.P., Waltman, S., Simon, U. et al. Detection of methane in air using diode-laser pumped difference-frequency generation near 3.2 μm. Appl. Phys. B 61, 553–558 (1995). https://doi.org/10.1007/BF01091213

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01091213

PACS

Navigation