Studia Logica

, Volume 52, Issue 3, pp 381–391

How to bereally contraction free

  • Greg Restall

DOI: 10.1007/BF01057653

Cite this article as:
Restall, G. Stud Logica (1993) 52: 381. doi:10.1007/BF01057653


A logic is said to becontraction free if the rule fromA → (AB) toAB is not truth preserving. It is well known that a logic has to be contraction free for it to support a non-trivial naïve theory of sets or of truth. What is not so well known is that if there isanother contracting implication expressible in the language, the logic still cannot support such a naïve theory. A logic is said to berobustly contraction free if there is no such operator expressible in its language. We show that a large class of finitely valued logics are each not robustly contraction free, and demonstrate that some other contraction free logics fail to be robustly contraction free. Finally, the sublogics of Łω (with the standard connectives) are shown to be robustly contraction free.

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Greg Restall
    • 1
  1. 1.Philosophy DepartmentThe University of QueenslandQueenslandAustralia

Personalised recommendations