[BM1]

M. Biroli and U. Mosco, “Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces,”*Atti Accad. Naz. Lincei Cl. Sci. Fis.-Mat. Natur.*, to appear.

[BM2]

M. Biroli and U. Mosco, Proceedings of the Conference “Potential theory and partial differential operators with nonnegative characteristic form,” Parma, February 1994, Kluwer, Amsterdam, to appear.

[Bo]

B. Bojarski, “Remarks on Sobolev imbedding inequalities,” Lecture Notes in Math. 1351 (1989), 52–68, Springer-Verlag.

[Bu]

H. Busemann, “The Geometry of Geodesics,” Academic Press, New York, 1955.

Google Scholar[Ca]

A.P. Calderón, “Inequalities for the maximal function relative to a metric,”

*Studia Math.*
**57** (1976), 297–306.

Google Scholar[CGL]

G. Citti, N. Garofalo and E. Lanconelli, “Harnack's inequality for a sum of squares of vector fields plus a potential”

*Amer. J. Math.*
**115** (1993), 639–734.

Google Scholar[Ch]

S.-K. Chua, “Weighted Sobolev's inequality on domains satisfying the Boman chain condition,”*Proc. Amer. Math. Soc.*, to appear.

[CW]

S. Chanillo and R.L. Wheeden, “Weighted Poincaré and Sobolev inequalities and estimates for the Peano maximal function,”

*Amer. J. Math.*
**107** (1985), 1191–1226.

Google Scholar[F]

B. Franchi, “Weighted Sobolev-Poincaré inequalities and pointwise estimates for a class of degenerate elliptic operators,”

*Trans. Amer. Math. Soc.*
**327** (1991), 125–158.

Google Scholar[Fe]

H. Federer, “Geometric Measure Theory,” Springer, 1969.

[FGaW1]

B. Franchi, S. Gallot and R.L. Wheeden, “Inégalités isoperimétriques pour des métriques dégénérées,” C.R. Acad. Sci. Paris, Sér. I, Math.

**317** (1993), 651–654.

Google Scholar[FGaW2]

B. Franchi, S. Gallot and R. L. Wheeden, “Sobolev and isoperimetric inequalities for degenerate metrics,”*Math. Ann.*, to appear.

[FGuW1]

B. Franchi, C.E. Gutierrez and R.L. Wheeden, “Weighted Sobolev-Poincaré inequalities for Grushin type operators,”

*Comm. P.D.E.*,

**19** (1994), 523–604.

Google Scholar[FGuW2]

B. Franchi, C. E. Gutierrez and R. L. Wheeden, “Two-weight Sobolev-Poincaré inequalities and Harnack inequality for a class of degenerate elliptic operators,”

*Atti Accad. Naz. Lincei Cl. Sci. Mat. Fis. Nat.*
**5** (9) (1994), 167–175.

Google Scholar[FL]

B. Franchi and E. Lanconelli, “Hölder regularity for a class of linear non uniformly elliptic operators with measurable coefficients,”

*Ann. Scuola Norm. Sup. Pisa* (IV)

**10** (1983), 523–541.

Google Scholar[FLW]

B. Franchi, G. Lu and R.L. Wheeden, “Representation formulas and weighted Poincaré inequalities for Hörmander vector fields,” preprint (1994).

[FP]

C. Fefferman and D.H. Phong, “Subelliptic eigenvalue estimates,” Conference on Harmonic Analysis, Chicago, 1980, W. Beckner et al. ed., Wadsworth (1981), 590–606.

[FS]

B. Franchi and R. Serapioni, “Pointwise estimates for a class of strongly degenerate elliptic operators,”

*Ann. Scuola Norm. Sup. Pisa* (IV)

**14** (1987), 527–568.

Google Scholar[G]

M. Gromov, “Structures Métriques pour les Variétés Riemanniennes (rédigé par J. Lafontaine et. P. Pansu),” CEDIC Ed., Paris, 1981.

[GGK]

I. Genebashvili, A. Gogatishvili and V. Kokilashvili, “Criteria of general weak type inequalities for integral transforms with positive kernels,”

*Proc. Georgian Acad. Sci. Math.*
**1** (1993), 11–34.

Google Scholar[H]

L. Hörmander, “Hypoelliptic second order differential equations,”

*Acta Math.*
**119** (1967), 147–171.

Google Scholar[IN]

T. Iwaniec and C.A. Nolder, “Hardy-Littlewood inequality for quasiregular mappings in certain domains in

**R**
^{n},”

*Ann. Acad. Sci. Fenn. Series A.I. Math.*
**10** (1985), 267–282.

Google Scholar[J]

D. Jerison, “The Poincaré inequality for vector fields satisfying Hörmander's condition,”

*Duke Math. J.*
**53** (1986), 503–523.

Google Scholar[L1]

G. Lu, “Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications,”

*Revista Mat. Iberoamericana*
**8** (1992), 367–439.

Google Scholar[L2]

G. Lu, “The sharp Poincaré inequality for free vector fields: An endpoint result,” Preprint 1992,*Revista Mat. Iberoamericana*
**10** (2), 1994, to appear.

[L3]

G. Lu, “Embedding theorems on Campanato-Morrey spaces for vector fields of Hörmander type and applications to subelliptic PDE,” Preprint 1993.

[L4]

G. Lu, “Embedding theorems into the Orlicz and Lipschitz spaces and applications to quasilinear subelliptic differential equations,” Preprint, February, 1994.

[L5]

G. Lu, “A note on Poincaré type inequality for solutions to subelliptic equations,” Preprint, March, 1994.

[MS-Cos]

P. Maheux and L. Saloff-Coste, “Analyse sur les boules d'un opérateur sous-elliptique,” preprint (1994).

[NSW]

A. Nagel, E. M. Stein and S. Wainger, “Balls and metrics defined by vector fields I: basic properties,”

*Acta Math.*
**155** (1985), 103–147.

Google Scholar[RS]

L.P. Rothschild and E.M. Stein, “Hypoelliptic differential operators and nilpotent groups,”

*Acta Math.*
**137** (1976), 247–320.

Google Scholar[S-Cal]

A. Sánchez-Calle, “Fundamental solutions and geometry of the sums of squares of vector fields,”

*Invent. Math.*
**78** (1984), 143–160.

Google Scholar[S-C]

F. Serra Cassano, “On the local boundedness of certain solutions for a class of degenerate elliptic equations”, preprint (1994).

[S-Cos]

L. Saloff-Coste, “A note on Poincaré, Sobolev and Harnack inequalities,” Internat. Math. Research Notices (

*Duke Math. J.*)

**65** (2) (1992), 27–38.

Google Scholar[SW]

E.T. Sawyer and R.L. Wheeden, “Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces,”

*Amer. J. Math.*
**114** (1992), 813–874.

Google Scholar[X]

C.-J. Xu, “Regularity for quasilinear second-order subelliptic equations”,

*Comm. Pure Appl. Math.*,

**45** (1992), 77–96.

Google Scholar