Journal of Dynamics and Differential Equations

, Volume 5, Issue 2, pp 305–357

Bifurcations toN-homoclinic orbits andN-periodic orbits in vector fields

Authors

  • Masashi Kisaka
    • Department of MathematicsUniversity of Osaka Prefecture
  • Hiroshi Kokubu
    • Department of Mathematics, Faculty of ScienceKyoto University
  • Hiroe Oka
    • Department of Applied Mathematics and Informatics, Faculty of Science and TechnologyRyukoku University
Article

DOI: 10.1007/BF01053164

Cite this article as:
Kisaka, M., Kokubu, H. & Oka, H. J Dyn Diff Equat (1993) 5: 305. doi:10.1007/BF01053164

Abstract

We study bifurcations of two types of homoclinic orbits—a homoclinic orbit with resonant eigenvalues and an inclination-flip homoclinic orbit. For the former, we prove thatN-homoclinic orbits (N⩾3) never bifurcate from the original homoclinic orbit. This answers a problem raised by Chow-Deng-Fiedler (J. Dynam. Diff. Eq. 2, 177–244, 1990). For the latter, we investigate mainlyN-homoclinic orbits andN-periodic orbits forN=1, 2 and determine whether they bifurcate or not under an additional condition on the eigenvalues of the linearized vector field around the equilibrium point.

Key words

Homoclinic orbit inclination-flip homoclinic doubling bifurcation

Copyright information

© Plenum Publishing Corporation 1993