Alikakos, N. D., and Fusco, G. (1991). A dynamical systems proof of the Krein-Rutman theorem and an extension of the Perron theorem.*Proc. Roy. Soc. Edinburgh*
**117A**, 209–214.

Amann, H. (1985). Global existence for semilinear parabolic systems.*J. reine angew. Math.*
**366**, 47–89.

Amann, H. (1987). On abstract parabolic fundamental solutions.*J. Math. Soc. Jap.*
**39**, 93–116.

Brunovský, P., Poláčik, P., and Sandstede, B. (1992). Convergence in general periodic parabolic equations in one space dimension.*Nonlin. Anal.*
**18**, 209–215.

Dancer, E. N., and Hess, P. (1991). Stability of fixed points for order-preserving discrete-time dynamical systems.*J. reine angew. Math.*
**419**, 125–139.

Dancer, E. N., and Hess, P. Stable subharmonic solutions in periodic reaction-diffusion equations (preprint).

Deimling, K. (1985).*Nonlinear Functional Analysis*, Springer-Verlag, Berlin-Heidelberg-New York.

Henry, D. (1981).*Geometric Theory of Semilinear Parabolic Equations*, Lecture Notes in Mathematics 89, Springer-Verlag, New York.

Hess, P. (1987). Spatial homogenity of stable solutions of some periodic-parabolic problems with Neumann boundary conditions.*J. Diff. Eq.*
**68**, 320–331.

Hess, P. (1991).*Periodic-Parabolic Boundary Value Problems and Positivity*, Pitman Research Notes in Mathematics 247, Longman Scientific and Technical, New York.

Hess, P., and Poláčik, P. Boundedness of prime periods of stable cycles and convergence to fixed points in discrete monotone dynamical systems (preprint).

Hirsch, M. W. (1988). Stability and convergence in strongly monotone dynamical systems.*J. reine angew. Math.*
**383**, 1–58.

Matano, H. (1979). Asymptotic behavior and stability of solutions of semilinear diffusion equations.*Publ. Res. Inst. Math. Sci.*
**15**, 401–454.

Mierczyński, J. Flows on ordered bundles (preprint).

Poláčik, P. (1989a). Convergence in smooth strongly monotone flows defined by semilinear parabolic equations.*J. Diff. Eq.*
**79**, 89–110.

Poláčik, P. (1989b). Domains of attraction of equilibria and monotonicity properties of convergent trajectories in semilinear parabolic systems admitting strong comparison principle.*J. reine angew. Math.*
**400**, 32–56.

Poláčik, P. Dynamics of scalar semilinear parabolic equations (preprint).

Poláčik, P., and Tereščák, I. (1991). Convergence to cycles as a typical asymptotic behavior in smooth strongly monotone discrete-time dynamical systems.*Arch. Ration. Mech. Anal.*
**116**, 339–360.

Protter, M. H., and Weinberger, H. F. (1967).*Maximum Principles in Differential Equations*, Prentice-Hall, Englewood Cliffs, NJ.

Ruelle, D. (1979). Analycity properties of characteristic exponents of random matrix products.*Ada. Math.*
**32**, 68–80.

Smith, H. L., and Thieme, H. R. (1990). Quasiconvergence and stability for strongly orderpreserving semiflows.*SIAM J. Math. Anal.*
**21**, 673–692.

Smith, H. L., and Thieme, H. R. (1991). Convergence for strongly order-preserving semiflows.*SIAM J. Math. Anal.*
**22**, 1081–1101.

Takáč, P. (1992a). Asymptotic behavior of strongly monotone time-periodic dynamical processes with symmetry.*J. Diff. Eq.*
**100**, 355–378.

Takáč, P. (1992b). Linearly stable subharmonic orbits in strongly monotone time-periodic dynamical systems.*Proc. Am. Math. Soc.* (in press).

Takáč, P. A construction of stable subharmonic orbits in monotone time-periodic dynamical systems (preprint).

Temam, R. (1988).*Infinite-Dimensional Dynamical Systems in Mechanics and Physics*, Appl. Math. Sci. 68, Springer-Verlag, New York.