Journal of Statistical Physics

, Volume 71, Issue 5, pp 865–901

Construction of modular branching functions from Bethe's equations in the 3-state Potts chain

  • Rinat Kedem
  • Barry M. McCoy

DOI: 10.1007/BF01049953

Cite this article as:
Kedem, R. & McCoy, B.M. J Stat Phys (1993) 71: 865. doi:10.1007/BF01049953


We use the single-particle excitation energies and the completeness rules of the 3-state antiferromagnetic Potts chain, which have been obtained from Bethe's equation, to compute the modular invariant partition function. This provides a fermionic construction for the branching functions of theD4 representation ofZ4 parafermions which complements the bosonic constructions. It is found that there are oscillations in some of the correlations and a new connection with the field theory of the Lee-Yang edge is presented.

Key words

Affine Lie algebras conformal field theory parafermions modular invariant partition function quasiparticles 

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Rinat Kedem
    • 1
  • Barry M. McCoy
    • 1
  1. 1.Institute for Theoretical PhysicsState University of New YorkStony Brook

Personalised recommendations