Phenomenology of nonlocal cellular automata
 Wentian Li
 … show all 1 hide
Rent the article at a discount
Rent now* Final gross prices may vary according to local VAT.
Get AccessAbstract
Dynamical systems with nonlocal connections have potential applications to economic and biological systems. This paper studies the dynamics of nonlocal cellular automata. In particular, all twostate, threeinput nonlocal cellular automata are classified according to the dynamical behavior starting from random initial configurations and random wirings, although it is observed that sometimes a rule can have different dynamical behaviors with different wirings. The nonlocal cellular automata rule space is studied using a meanfield parametrization which is ideal for the situation of random wiring. Nonlocal cellular automata can be considered as computers carrying out computation at the level of each component. Their computational abilities are studied from the point of view of whether they contain many basic logical gates. In particular, I ask the question of whether a threeinput cellular automaton rule contains the three fundamental logical gates: twoinput rules AND and OR, and oneinput rule NOT. A particularly interesting “edgeofchaos” nonlocal cellular automaton, the rule 184, is studied in detail. It is a system of coupled “selectors” or “multiplexers.” It is also part of the Fredkin's gate—a proposed fundamental gate for conservative computations. This rule exhibits irregular fluctuations of density, large coherent structures, and long transient times.
 P. Bak, C. Tang, and K. Wiesenfeld, Selforganized criticality: An explanation of 1/f noise,Phys. Rev. Lett. 59:381–384 (1987).
 E. Berlekamp, J. Conway, and R. Guy,Winning Ways for Your Mathematical Plays, Vol. 2 (Academic Press, 1984).
 T. Bohr, G. Grinstein, Y. He, and C. Jayaprakash, Coherence, chaos, and broken symmetry in classical, manybody dynamical systems,Phys. Rev. Lett. 58(21):2155–2158 (1987).
 T. Bohr and O. B. Christensen, Size dependence, coherence, and scaling in turbulent coupledmap lattices,Phys. Rev. Lett. 63(20):2161–2164 (1989).
 J. Carlson, J. Chayes, E. Grannan, and G. Swindle, Selforganized criticality in sandpiles: Nature of the critical phenomenon,Phys. Rev. A 42(4):2467–2470 (1990).
 H. Chaté and P. Manneville, Collective behaviors in spatially extended systems with local interactions and synchromous updating,Prog. in Theor. Phys. 87:1–60 (1992).
 A. Chhabra, M. Feigenbaum, L. Kadanoff, A. Kolan, and I. Procaccia, Sandpiles, avalanches, and the statistical mechanics of nonequilibrium stationary states, preprint (1992).
 E. F. Codd,Cellular Automata (Academic Press, New York, 1968).
 J. P. Crutchfield and K. Kaneko, Phenomenology of spatiotemporal chaos, inDirections in Chaos, Bailin Hao, ed. (World Scientific, Singapore, 1987).
 J. P. Crutchfield and K. Kaneko, Are attractors relevant to turbulence?Phys. Rev. Lett. 60(26):2715–2718 (1988).
 J. P. Crutchfield, Hunting for transients and cycles, unpublished notes (March 1988).
 J. P. Crutchfield, Subbasins, portals, and mazes: Transients in high dimensions,Nucl. Phys. B (Proc. Suppl.) 5A:287–292 (1988).
 F. FogelmanSoulié, Parallel and sequential computation on Boolean networks,Theor. Computer Sci. 40:275–300 (1985).
 E. Fredkin and T. Toffoli, Conservative logic,Int. J. Theor. Phys. 21(3/4):219–253 (1982).
 P. Gacs, G. L. Kurdyumov, and L. A. Levin, Onedimensional uniform arrays that wash out finite islands,Prob. Peredachi. Inf. 14:92–98 (1978).
 J. Guckenheimer and P. Holmes,Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (SpringerVerlag, 1983).
 H. Gutowitz, J. Victor, and B. Knight, Local structure theory for cellular automata,Physica D 28:18–48 (1987).
 H. Gutowitz, Hierarchical classification of cellular automata,Physica D 45(1–3):136–156 (1990).
 G. Grinstein, Stability of nonstationary states of classical, manybody dynamical systems,J. Stat. Phys. 5(5/6):803–815 (1988).
 E. Jen, Global properties of cellular automata,J. Stat. Phys. 43(1/2):219–242 (1986); Invariant strings and patternrecognizing properties of onedimensional cellular automata,J. Stat. Phys. 43(1/2):243–265 (1986).
 K. Kaneko, Lyapunov analysis and information flow in coupled map lattices,Physica D 23:436–447 (1986).
 K. Kaneko, Chaotic but regular posinega switch among coded attractors by clustersize variation,Phys. Rev. Lett. 63(3):219–223 (1989).
 K. Kaneko, Clustering, coding, switching, hierarchical ordering, and control in a network of chaotic elements,Physica D 41:137–172 (1990).
 K. Kaneko, Supertransients, spatiotemporal intermittency and stability of fully developed spatiotemporal chaos,Phys. Lett. A 149(2, 3):105–112 (1990).
 F. Kaspar and H. G. Schuster, Scaling at the onset of spatial disorder in coupled piecewise linear map,Phys. Lett. A 113:451–453 (1986).
 S. A. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets,J. Theor. Biol. 22:437–167 (1969).
 S. A. Kauffman, Emergent properties in randomly complex automata,Physica D 10:145–156 (1984).
 D. E. Knuth,The Art of Computer Programming, Vol. 2:Seminumerical Algorithms (AddisonWesley, 1981).
 J. Krug, J. Socolar, and G. Grinstein, Surface fluctuations and criticality in a class of 1d sandpile models, preprint (1992).
 C. Langton, Studying artificial life with cellular automata,Physica D 22(1–3):120–149 (1986).
 C. Langton, Computation at the edge of chaos: Phase transitions and emergent computation,Physica D 42:12–37 (1990).
 C. Langton, Computation at the Edge of Chaos, Ph.D. Thesis, University of Michigan (1990).
 W. Li, Power spectra of regular languages and cellular automata,Complex Systems 1(1):107–130 (1987).
 W. Li, Complex patterns generated by next nearest neighbors cellular automata,Computer Graphics 13(4):531–537 (1989).
 W. Li, Problems in Complex Systems, Ph.D. Thesis, Columbia University, New York (1989) (Available from University Microfilm International, Ann Arbor, Michigan).
 W. Li and N. Packard, Structure of the elementary cellular automata rule space,Complex Systems 4(3):281–297 (1990).
 W. Li, N. Packard, and C. Langton, Transition phenomena in cellular automata rule space,Physica D 45(1–3):77–94 (1990).
 W. Li and M. Nordahl, Transient behavior of cellular automaton rule 110,Phys. Lett. A, to appear (1992).
 W. Li, Parametrizations of cellular automata rule space, in preparation.
 W. Li, Group meeting problems, in preparation.
 W. Li, Dynamical behavior of coupled selectors, in preparation.
 K. Lindgren and M. Nordahl, Universal computation in simple onedimensional cellular automata,Complex Systems 4(3):299–318 (1990).
 B. D. Lubachesky, Efficient parallel simulations of asynchronous cellular arrays,Complex Systems 1(6):1099–1123 (1987).
 J. L. Marroquín and A. Ramírez, Stochastic cellular automata with Gibbsian invariant measures,IEEE Trans. Information Theory 37(3):541–551 (1991).
 P. C. Matthews and S. H. Strogatz, Phase diagram for the collective behavior of limitingcycle oscillators,Phys. Rev. Lett. 65:1701–1704 (1990).
 R. May, Simple mathematical models with very complicated dynamics,Nature 261:459–467 (1976).
 N. Packard, Complexity of growing patterns in cellular automata, inDynamical Systems and Cellular Automata, J. Demongeot, E. Goles, and M. Techuente, eds. (Academic Press, 1985).
 N. Packard, Adaptation toward the edge of chaos, inComplexity in Biological Modeling, S. Kelso and M. Shlesinger, eds. (World Scientific, Singapore, 1988).
 P. Peretto and J.J. Niez, Stochastic dynamics of neural networks,IEEE Trans. Systems, Man, Cybernet. 16(1):73–83 (1986).
 C. Prado and Z. Olam, Inertia and break of selforganized criticality in sandpile cellularautomata model,Phys. Rev. A 45(2):665–669 (1992).
 W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,Numerical Recipes in C (Cambridge University Press, Cambridge, 1988).
 D. R. Rasmussen and T. Bohr, Temporal chaos and spatial disorder,Phys. Lett. A 125(2, 3):107–110 (1987).
 L. S. Schulman and P. E. Seiden, Statistical mechanics of a dynamical system based on Conway's Game of Life,J. Stat. Phys. 19:293–314 (1978).
 R. Shaw,The Dripping Faucet as a Model Chaotic System (Aerial Press, 1984).
 R. J. Smith,Circuits, Devices, and Systems — A First Course in Electrical Engineering (Wiley, 1966, 1984).
 J. Theiler, Mean field analysis of systems that exhibit selforganized criticality, Center for Nonlinear Studies preprint, Los Alamos National Lab (1991).
 J. Theiler, private communication.
 T. Toffoli and N. Margolus,Cellular Automata Machine—A New Environment for Modeling (MIT Press, 1987).
 K. Tsang, R. Mirollo, S. Strogatz, and K. Wiesenfeld, Dynamics of a globally coupled oscillator array,Physica D 48:102–112 (1991).
 D. K. Umberger, C. Grebogi, E. Ott, and B. Afeyan, Spatiotemporal dynamics in a dispersively coupled chain of nonlinear oscillators,Phys. Rev. A 39:4835–4842 (1989).
 J. von Neumann,Theory of SelfReproducing Automata, A. W. Burks, ed. (University of Illinois Press, 1966).
 G. Y. Vichniac, P. Tamayo, and H. Hartman, Annealed and quenched inhomogeneous cellular automata (ICA),J. Stat. Phys. 45(5/6):875–883 (1986).
 C. C. Walker and W. R. Ashby, On temporal characteristics of behavior in a class of complex systems,Kybernetik 3:100–108 (1966).
 C. C. Walker, Behavior of a class of complex systems: The effect of system size on properties of terminal cycles,J. Cybernet. 1(4):57–67 (1971).
 C. C. Walker, Predictability of transient and steadystate behavior in a class of complex binary sets,IEEE Trans. Systems, Man, Cybernet. 3(4):433–436 (1973).
 C. C. Walker, Stability of equilibrial states and limit cycles in sparsely connected, structurally complex Boolean nets,Complex Systems 1(6):1063–1086 (1987).
 C. C. Walker, Attractor dominance patterns is sparsely connected Boolean nets,Physica D 45(1–3):441–451 (1990).
 G. Weisbuch,Complex Systems Dynamics (AddisonWesley, 1991).
 K. Wiesenfeld and P. Hadley, Attractor crowding in oscillator arrays,Phys. Rev. Lett. 62:1335–1338 (1989).
 W. Wilbur, D. Lipman, and S. Shamma, On the prediction of local patterns in cellular automata,Physica D 19:397–410 (1986).
 S. Wolfram, Statistical mechanics of cellular automata,Rev. Mod. Phys. 55:601–644 (1983).
 S. Wolfram, Universality and complexity in cellular automata,Physica D 10:1–35 (1984).
 S. Wolfram, Computation theory of cellular automata,Commun. Math. Phys. 96:15–57 (1984).
 S. Wolfram, Twenty problems in the theory of cellular automata,Physica Scripta T9:170–183 (1985).
 Appendix: Properties of thek=2r=1 cellular automata, inTheory and Applications of Cellular Automata, S. Wolfram, ed. (World Scientific, Singapore, 1986).
 W. Wootters and C. G. Langton, Is there a sharp phase transition for deterministic cellular automata?Physica D 45(1–3):95–104 (1990).
 Title
 Phenomenology of nonlocal cellular automata
 Journal

Journal of Statistical Physics
Volume 68, Issue 56 , pp 829882
 Cover Date
 19920901
 DOI
 10.1007/BF01048877
 Print ISSN
 00224715
 Online ISSN
 15729613
 Publisher
 Kluwer Academic PublishersPlenum Publishers
 Additional Links
 Topics
 Keywords

 Nonlocal cellular automata
 automata networks
 classification of cellular automata
 cellular automata rule space
 critical hypersurface
 selforganized criticality
 meanfield theory
 universal computation
 “game of life”
 Fredkin's gate
 coupled selectors or coupled multiplexers
 edgeofchaos dynamics
 density fluctuations
 long transient behaviors
 cooperative dynamics
 Industry Sectors
 Authors

 Wentian Li ^{(1)}
 Author Affiliations

 1. Santa Fe Institute, 87501, Santa Fe, New Mexico