, Volume 19, Issue 2, pp 167-170

On an inequality of Lieb and Thirring

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The following generalization of an inequality of Lieb and Thirring is proved: $$Tr\{ b^{1 2} ab^{1 2} )^{qk} \} \leqslant Tr\{ (b^(q, 2) a^(q) b^(q 2)^k \} $$ for all positive selfadjoint operatorsa andb and for positive numbersq>1 andk>0. More generally, $$Tr\varphi ((b^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} ab^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} )q) \leqslant Tr\varphi (b^{qk} a^q b^{{q \mathord{\left/ {\vphantom {q 2}} \right. \kern-\nulldelimiterspace} 2}} q)$$ for any monotone increasing continuous function ϕ on (0, ∞) such that ϕ(0)=0 and ξ→ϕ(eξ) is convex.