, Volume 1, Issue 1, pp 1-34

The aquatic chemistry of rare earth elements in rivers and estuaries

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Laboratory experiments were carried out to determine how pH, colloids and salinity control the fractionation of rare earth elements (REEs) in river and estuarine waters. By using natural waters as the reaction media (river water from the Connecticut, Hudson and Mississippi Rivers) geochemical reactions can be studied in isolation from the large temporal and spatial variability inherent in river and estuarine chemistry. Experiments, field studies and chemical models form a consistent picture whereby REE fractionation is controlled by surface/solution reactions. The concentration and fractionation of REEs dissolved in river waters are highly pH dependent. Higher pH results in lower concentrations and more fractionated composition relative to the crustal abundance. With increasing pH the order of REE adsorption onto river particle surfaces is LREEs > MREEs > HREEs. With decreasing pH, REEs are released from surfaces in the same order. Within the dissolved (<0.22 µm) pool of river waters, Fe-organic colloids are major carriers of REEs. Filtration through filters and ultrafilters with progressively finer pore sizes results in filtrates which are lower in absolute concentrations and more fractionated. The order of fractionation with respect to shale, HREEs > MREEs > LREEs, is most pronounced in the solution pool, defined here as <5K and <50K ultrafiltrates. Colloidal particles have shale-like REE compositions and are highly LREE enriched relative to the REE composition of the dissolved and solution pools. The addition of sea water to river water causes the coagulation of colloidal REEs within the dissolved pool. Fractionation accompanies coagulation with the order of sea water-induced removal being LREEs > MREEs > HREEs. While the large scale removal of dissolved river REEs in estuaries is well established, the release of dissolved REEs off river particles is a less studied process. Laboratory experiments show that there is both release and fractionation of REEs when river particles are leached with seawater. The order of sea water-induced release of dissolved REE(III) (LREEs > MREEs > HREEs) from Connecticut River particles is the same as that associated with lowering the pH and the same as that associated with colloidal particles. River waters, stripped of their colloidal particles by coagulation in estuaries, have highly evolved REE composition. That is, the solution pool of REEs in river waters are strongly HREE-enriched and are fractionated to the same extent as that of Atlantic surface seawater. This strengthens the conclusions of previous studies that the evolved REE composition of sea water is coupled to chemical weathering on the continents and reactions in estuaries. Moreover, the release of dissolved Nd from river particles to sea water may help to reconcile the incompatibility between the long oceanic residence times of Nd (7100 yr) and the inter-ocean variations of the Nd isotopic composition of sea water. Using new data on dissolved and particle phases of the Amazon and Mississippi Rivers, a comparison of field and laboratory experiments highlights key features of REE fractionation in major river systems. The dissolved pool of both rivers is highly fractionated (HREE enriched) with respect to the REE composition of their suspended particles. In addition, the dissolved pool of the Mississippi River has a large negative Ce-anomaly suggesting in-situ oxidation of Ce(III). One intriguing feature is the well developed maximum in the middle REE sector of the shale normalized patterns for the dissolved pool of Amazon River water. This feature might reflect competition between surface adsorption and solution complexation with carbonate and phosphate anions.