1.

M. Aizenman, Geometric Analysis of*φ*
^{4} fields and Ising models. Parts I and II,*Commun. Math. Phys.*
**86**:1 (1982).

2.

J. Fröhlich, private communication.

3.

J. Fröhlich, On the triviality of λφ_{d}^{4} theories and the approach to the critical point in*d* > 4 dimensions,*Nucl. Phys.*
**B200[FS4]**:281 (1982).

4.

R. Durrett, Some general results concerning the critical exponents of percolation processes, UCLA preprint (1983).

5.

P. D. Seymour and D. J. A. Welsh, Percolation probabilities on the square lattice,*Ann. Discrete Math.*
**3**:227 (1978); L. Russo, A note on percolation,*Z. Wahrsch. Verw. Geb.*
**43**:39 (1978).

6.

B. Simon, Correlation inequalities and the decay of correlations in ferromagnets,*Commun. Math. Phys.*
**77**:111 (1980).

7.

E. H. Lieb, A refinement of Simon's correlation inequality,*Commun. Math. Phys.*
**77**:127 (1980).

8.

C. Newman and L. Schulman, One dimensional 1/¦x-y¦s percolation models:the existence of a transition for*s* ⩽ 2, in preparation; M. Aizenman and C. Newman, Discontinuity of the percolation density in one-dimensional 1/¦*x*-y¦2 percolation models, in preparation.

9.

M. Aizenman and R. Graham, On the renormalized coupling constant and the susceptibility in φ_{4}^{4} field theory and Ising model in four dimensions,*Nucl. Phys.*
**B225[FS9]**:261 (1983).

10.

J. Fröhlich, B. Simon, and T. Spencer, Infrared bounds, phase transitions and continuous symmetry breaking,*Commun. Math. Phys.*
**50**:79 (1976).

11.

G. Toulouse, Perspectives from the theory of phase transitions,*Nuovo Cimento*
**B23**:234 (1974); A. B. Harris, T. C. Lubensky, W. K. Holcomb, and C. Dasgupta, Renormalization-group approach to percolation problems,*Phys. Rev. Lett.*
**35**:327 (1975).

12.

F. Fucito and G. Parisi, On the range of validity of the 6 -ε expansion for percolation,*J. Phys. A*
**14**:L507 (1981).

13.

H. Kesten,*Percolation Theory for Mathematicians* (Birkhäuser, Boston, 1982).

14.

M. Fisher, Critical temperatures of anisotropic Ising lattices, II. General upper bounds,*Phys. Rev.*
**162**:480 (1967).

15.

C. M. Fortuin and P. W. Kasteleyn, On the random-cluster model, I,*Physica*
**57**:536 (1972).

16.

S. T. Klein and E. Shamir, An algorithmic method for studying percolation clusters, Stanford Univ. Dept. of Computer Science, Report No. STAN-CS-82-933 (1982).

17.

H. Kunz and B. Souillard, Essential singularity in the percolation model,*Phys. Rev. Lett.*
**40**:133 (1978).

18.

M. Aizenman, F. Delyon, and B. Souillard, Lower bounds on the cluster size distribution,*J. Stat. Phys.*
**23**:267(1980).

19.

F. Delyon and B. Souillard, private communication.

20.

A. D. Sokal, private communication.

21.

L. Gross, Decay of correlations in classical lattice models at high temperatures,*Commun. Math. Phys.*
**68**:9 (1979).