# Mayer expansions and the Hamilton-Jacobi equation

## Authors

- Received:
- Revised:

DOI: 10.1007/BF01010398

- Cite this article as:
- Brydges, D.C. & Kennedy, T. J Stat Phys (1987) 48: 19. doi:10.1007/BF01010398

- 41 Citations
- 97 Views

## Abstract

We review the derivation of Wilson's differential equation in (infinitely) many variables, which describes the infinitesimal change in an effective potential of a statistical mechanical model or quantum field theory when an infinitesimal “integration out” is performed. We show that this equation can be solved for short times by a very elementary method when the initial data are bounded and analytic. The resulting series solutions are generalizations of the Mayer expansion in statistical mechanics. The differential equation approach gives a remarkable identity for “connected parts” and precise estimates which include criteria for convergence of iterated Mayer expansions. Applications include the Yukawa gas in two dimensions past the*Β*=4*π* threshold and another derivation of some earlier results of Göpfert and Mack.