1.

Andersen, M.: Introduction to the variational bicomplex, in M. Gotay, J. Marsden and V. Moncrief (eds),*Mathematical Aspects of Classical Field Theory*, Contemporary Mathematics 132, Amer. Math Soc., Providence, 1992, pp. 51–73.

2.

Anderson, Ian M. and Kamran, N.: The variational bicomplex for second order scalar partial differential equations in the plane, Centre de recherches mathématiques, Technical report, September 1994.

3.

Anderson, Ian M. and Kamran, N.: The variational bicomplex for hyperbolic second order scalar partial differential equations in the plane (submitted May 1995).

4.

Bryant, R. L. and Griffiths, P. A.: Characteristic cohomology of differential systems, I: General theory, Duke University, Mathematics Preprint Series, January, 1993.

5.

Bryant, R. L. and Griffiths, P. A.: Characteristic cohomology of differential systems, II: Conservation laws for a class of parabolic equations, Duke University, Mathematics Preprint Series, January, 1993.

6.

Darboux, G.:*Leçons sur la théorie générale des suraces et les applications géométriques du calcul infinitésimal*, Gauthier-Villars, Paris, 1896.

7.

Forsyth, A.:*Theory of Differential Equations*, Vol. 6, Dover, New York, 1959.

8.

Goursat, E.:*Leçon sur l'intégration des équations aux dérivées partielles du second ordre á deux variables indépendantes*, Tome 2, Hermann, Paris, 1896.

9.

Olver, P. J.:*Applications of Lie Groups to Differential Equations*, Springer, New York, 1986.

10.

Tsujishita, T.: On variation bicomplexes associated to differential equations,*Osaka J. Math.*
**19**(1982), 311–363.

11.

Tsujishita, T.: Formal geometry of systems of differential equations,*Sugaku Exposition*
**2** (1989), 1–40.

12.

Vinogradov, A. M.: The C-spectral sequence, Lagrangian formalism and conservation laws, I, II,*J. Math. Anal. Appl.*
**100** (1984), 1–129.