Angluin, D., Hellerstein, L., and Karpinski, M. (1993). Learning read-once formulas with queries.

*Journal of the Association for Computing Machinery*, 40(1):185–210.

Google ScholarAngluin, D. and Laird, P. (1988). Learning from noisy examples.

*Machine Learning*, 2(4):343–370.

Google ScholarBlumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M. K. (1987). Occam's razor.

*Information Processing Letters*, 24(6):377–380.

Google ScholarBshouty, N. H., Hancock, T. R., and Hellerstein, L. (1992). Learning arithmetic read-once formulas. In*Proceedings of the Twenty-Fourth Annual ACM Syrnposium on the Theory of Computing*, pages 370–381.

Furst, M. L., Jackson, J. C., and Smith, S. W. (1991). Improved learning of*AC*
^{0} functions. In*Proceedings of the Fourth Annual Workshop on Computational Learning Theory*, pages 317–325.

Goldman, S. A., Kearns, M. J., and Schapire, R. E. (1990). Exact identification of circuits using fixed points of amplification functions. In*31st Annual Symposium on Foundations of Computer Science*, pages 193–202. To appear,*SIAM Journal on Computing*.

Hancock, T. and Hellerstein, L. (1991). Learning read-once formulas over fields and extended bases. In*Proceedings of the Fourth Annual Workshop on Computational Learning Theory*, pages 326–336.

Hancock, T. and Mansour, Y. (1991). Learning monotone*kμ* DNF formulas on product distributions. In*Proceedings of the Fourth Annual Workshop on Computational Learning Theory*, pages 179–183.

Hancock, T. R. (1990). Identifying μ-formula decision trees with queries. In*Proceedings of the Third Annual Workshop on Computational Learning Theory*, pages 23–37.

Hellerstein, L. and Karpinski, M. (1990). Read-once formulas over different bases. Technical Report 8556-CS, University of Bonn.

Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables.

*Journal of the American Statistical Association*, 58(301):13–30.

Google ScholarKearns, M., Li, M., Pitt, L., and Valiant, L. (1987). On the learnability of Boolean formulae. In*Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing*, pages 285–295.

Kearns, M. and Valiant, L. G. (1989). Cryptographic limitations on learning Boolean formulae and finite automata. In*Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing*, pages 433–444. To appear,*Journal of the Association for Computing Machinery*.

Kearns, M. J. and Schapire, R. E. (1990). Efficient distribution-free learning of probabilistic concepts. In*31st Annual Symposium on Foundations of Computer Science*, pages 382–391. To appear,*Journal of Computer and System Sciences*.

Linial, N., Mansour, Y., and Nisan, N. (1989). Constant depth circuits, Fourier transform, and learnability. In*30th Annual Symposium on Foundations of Computer Science*, pages 574–579.

Pagallo, G. and Haussler, D. (1989). A greedy method for learning μDNF functions under the uniform distribution. Technical Report UCSC-CRL-89-12, University of California Santa Cruz, Computer Research Laboratory.

Sloan, R. H. (1988). Types of noise in data for concept learning. In*Proceedings of the 1988 Workshop on Computational Learning Theory*, pages 91–96.

Valiant, L. G. (1984). A theory of the learnable.

*Communications of the ACM*, 27(11):1134–1142.

Google ScholarVerbeurgt, K. (1990). Learning DNF under the uniform distribution in quasi-polynomial time. In*Proceedings of the Third Annual Workshop on Computational Learning Theory*, pages 314–326.

Yamanishi, K. (1992). A learning criterion for stochastic rules.

*Machine Learning*, 9(2/3):165–203.

Google Scholar