, Volume 5, Issue 4, pp 415-431

Tryptophan and phenylalanine transport in rat cerebral cortex slices as influenced by sodium ions

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Tryptophan and phenylalanine transport in rat cerebral cortex slices was studied in sodium-free media and during influx and efflux of sodium ions. Choline as a substitute for sodium in incubation media increased efflux and decreased influx of tryptophan and phenylalanine. Exchange of intracellular [3H]tryptophan and [3H]phenylalanine with extracellular unlabeled histidine, phenylalanine, and tryptophan was sodium-independent. Efflux of sodium ions from the slices had no immediate effects on phenylalanine and tryptophan efflux, but influx decreased. Influx of sodium into the sodium-depleted slices provoked a transient increase in tryptophan and phenylalanine efflux and also enhanced influx. The results are interpreted to indicate that sodium ions may possibly affect the function of the primary transport sites for aromatic amino acids at cerebral membranes by controlling the orientation of their reactive sites towards the intracellular and extracellular sides, rather than by being directly involved in the binding of amino acids to the carriers.