Graefe's Archive for Clinical and Experimental Ophthalmology

, Volume 235, Issue 10, pp 618–626

Autoregulation of human optic nerve head blood flow in response to acute changes in ocular perfusion pressure


    • Institut de Recherche en Ophthalmologie
  • Mark Hero
    • Institut de Recherche en Ophthalmologie
  • Patrick Titze
    • Institut de Recherche en Ophthalmologie
  • Beno Petrig
    • Institut de Recherche en Ophthalmologie
Clinical Investigation

DOI: 10.1007/BF00946937

Cite this article as:
Riva, C.E., Hero, M., Titze, P. et al. Graefe's Arch Clin Exp Ophthalmol (1997) 235: 618. doi:10.1007/BF00946937


• Background: Studies in animals have demonstrated that optic nerve head (ONH) blood flow (Fonh) is autoregulated, but there is a lack of evidence for such a process in humans. Therefore, we investigated the relationship between Fonh and mean ocular perfusion pressure (PPm) in normal volunteers when PPm is decreased through elevation of the intraocular pressure (IOP). • Methods: Laser Doppler flowmetry (LDF) was used to measure relative mean velocity (Velohn), volume (Volonh) and Fonh of blood at sites of the ONH away from visible vessels, while PPm was decreased in two ways: (1) rapidly, by IOP increments of 15 s duration, and (2) slowly, by IOP increments of 2 min duration, both by scleral suction cup in one eye of each of nine subjects. • Results: A rapid and large decrease of PPm of more than 100% induced a decrease of more than 80% in Fonh. With the slower decrease in PPm Fonh remained constant down to a PPm of ≃22 mm Hg (IOP=40 mm Hg) and then decreased, predominatly due to a decrease in Velohn. Immediately after removal of the suction cup, Fonh increased transiently by 44% above baseline. • Conclusions: This study demonstrates efficient blood flow autoregulation in the OHN, which is probably brought about by an increase in vascular capacitance. The magnitude of the reactive hyperaemia agrees with the compensatory decrease in ONH vascular resistance during IOP elevation. The time scale of the autoregulatory process and the dependence of the hyperaemia upon duration of IOP elevation suggest a metabolic mechanism of autoregulation.

Copyright information

© Springer-Verlag 1997